scholarly journals Towards Drug Delivery Control Using Iron Oxide Nanoparticles in Three-Dimensional Magnetic Resonance Imaging

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1876
Author(s):  
Mohammed Almijalli ◽  
Ali Saad ◽  
Khalid Alhussaini ◽  
Adham Aleid ◽  
Abdullatif Alwasel

The purpose of this paper was to detect and separate the cluster intensity provided by Iron oxide nanoparticles (IO-NPs), in the MRI images, to investigate the drug delivery effectiveness. IO-NPs were attached to the macrophages and inserted into the eye of the inflamed mouse’s calf. The low resolution of MRI and the tiny dimension of the IO-NPs made the situation challenging. IO-NPs serve as a marker, due to their strong intensity in the MRI, enabling us to follow the track of the macrophages. An image processing procedure was developed to estimate the position and the amount of IO-NPs spreading inside the inflamed mouse leg. A fuzzy Clustering algorithm was adopted to select the region of interest (ROI). A 3D model of the femoral region was used for the detection and then the extraction IO-NPs in the MRI images. The results achieved prove the effectiveness of the proposed method to improve the control process of targeted drug delivered. It helps in optimizing the treatment and opens a promising novel research axis for nanomedicine applications.

2020 ◽  
Vol 15 (3) ◽  
pp. 369-375
Author(s):  
Reem S. Alanazi ◽  
Ali S. Saad

Nanomedicine targeted drug delivery is one of the emerging techniques for diagnosis and treatment of complex diseases. Medical image processing of High-Resolution Magnetic Resonance Imaging (HR-MRI), when combined with iron oxide nanoparticles (IO-NPs), provides a precious tool to monitor diagnosis and treatment processes. The challenge is to detect the nanoparticles inside the HR-MRI images. This is due to the low resolution of the images and the small size of the nanoparticles. In this paper, we study the drug delivery efficiency using a mouse with an inflamed calf, with IO-NPs attached to the therapeutic drug and injected into the mouse's eye. Our aim is to know how much of the drug injected will reach the inflamed region of the calf. A high-resolution MRI system was used to take images of the inflamed calf region. Knowing that iron oxide has a strong magnetic intensity on MRI images, image processing techniques were used to identify the location and quantity of IO-NPs attached to the drug. By knowing the location and quantity of IO-NPs we can estimate the quantity of drug delivered to the region of interest. In our project, K-mean algorithm, an automatic clustering algorithm was used to detect the iron oxide NPs in the MRI images. This then extracts them from the 3D model of the femoral region of interest. Extraction of NPs permits an estimation of the number of NPs clustered in the region and furthermore estimates the quantity of the drug delivered to the region of interest. The results obtained of nanoparticle detection and extraction seem to be a promising way to estimate the amount of delivered drug to a targeted area.


2020 ◽  
Vol 13 ◽  
Author(s):  
Selin Yılmaz ◽  
Çiğdem İçhedef ◽  
Kadriye Buşra Karatay ◽  
Serap Teksöz

Backgorund: Superparamagnetic iron oxide nanoparticles (SPIONs) have been extensively used for targeted drug delivery systems due to their unique magnetic properties. Objective: In this study, it’s aimed to develop a novel targeted 99mTc radiolabeled polymeric drug delivery system for Gemcitabine (GEM). Methods: Gemcitabine, an anticancer agent, was encapsulated into polymer nanoparticles (PLGA) together with iron oxide nanoparticles via double emulsion technique and then labeled with 99mTc. SPIONs were synthesized by reduction–coprecipitation method and encapsulated with oleic acid for surface modification. Size distribution and the morphology of the synthesized nanoparticles were caharacterized by dynamic light scattering(DLS)and scanning electron microscopy(SEM), respectively. Radiolabeling yield of SPION-PLGAGEM nanoparticles were determined via Thin Layer Radio Chromatography (TLRC). Cytotoxicity of GEM loaded SPION-PLGA were investigated on MDA-MB-231 and MCF7 breast cancer cells in vitro. Results: SEM images displayed that the average size of the drug-free nanoparticles was 40 nm and the size of the drug-loaded nanoparticles was 50 nm. The diameter of nanoparticles were determined as 366.6 nm by DLS, while zeta potential was found as-29 mV. SPION was successfully coated with PLGA, which was confirmed by FTIR. GEM encapsulation efficiency of SPION-PLGA was calculated as 4±0.16 % by means of HPLC. Radiolabeling yield of SPION-PLGA-GEM nanoparticles were determined as 97.8±1.75 % via TLRC. Cytotoxicity of GEM loaded SPION-PLGA were investigated on MDA-MB-231 and MCF7 breast cancer cells. SPION-PLGA-GEM showed high uptake on MCF-7, whilst incorporation rate was increased for both cell lines which external magnetic field application. Conclusion: 99mTc labeled SPION-PLGA nanoparticles loaded with GEM may overcome some of the obstacles in anti-cancer drug delivery because of their appropriate size, non-toxic, and supermagnetic characteristics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
B. S. Unnikrishnan ◽  
G. U. Preethi ◽  
T. T. Sreelekha

AbstractEmergence of nanotechnology created a drastic change in the field of cancer therapy due to their unique features in drug delivery and imaging. Polysaccharide based nanoparticles have received extensive attention in recent years as promising nanoparticle mediated drug delivery systems. Polysaccharides are endorsed with versatile merits including high drug encapsulation efficiency, efficient drug protection against chemical or enzymatic degradation, unique ability to create a controlled release and cellular internalization. In the current study, we have fabricated doxorubicin-loaded carboxymethylated PST001 coated iron oxide nanoparticles (DOX@CM-PST-IONPs) for better management of cancer. CM-PST coated iron oxide nanoparticles co-encapsulated with chemotherapeutic drug doxorubicin, can be utilized for targeted drug delivery. Biocompatible and non-toxic nanoconjugates was found to be effective in both 2-D and 3-D cell culture system with efficient cancer cell internalization. The bench-marked potential of CM-PIONPs to produce reactive oxygen species makes it a noticeable drug delivery system to compact neoplasia. These nanoconjugates can lay concrete on a better way for the elimination of cancer spheroids and tumor burden.


2017 ◽  
Vol 23 (35) ◽  
pp. 8333-8347 ◽  
Author(s):  
Tina Skorjanc ◽  
Farah Benyettou ◽  
John-Carl Olsen ◽  
Ali Trabolsi

2012 ◽  
Vol 393 ◽  
pp. 328-333 ◽  
Author(s):  
Amelia J. Wagstaff ◽  
Sarah D. Brown ◽  
Megan R. Holden ◽  
Gemma E. Craig ◽  
Jane A. Plumb ◽  
...  

2018 ◽  
Vol 211 ◽  
pp. 34-41 ◽  
Author(s):  
Joanna Kurczewska ◽  
Michał Cegłowski ◽  
Grzegorz Schroeder

Sign in / Sign up

Export Citation Format

Share Document