scholarly journals Review of ZnO Binary and Ternary Composite Anodes for Lithium-Ion Batteries

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2001
Author(s):  
Vu Khac Hoang Bui ◽  
Tuyet Nhung Pham ◽  
Jaehyun Hur ◽  
Young-Chul Lee

To enhance the performance of lithium-ion batteries, zinc oxide (ZnO) has generated interest as an anode candidate owing to its high theoretical capacity. However, because of its limitations such as its slow chemical reaction kinetics, intense capacity fading on potential cycling, and low rate capability, composite anodes of ZnO and other materials are manufactured. In this study, we introduce binary and ternary composites of ZnO with other metal oxides (MOs) and carbon-based materials. Most ZnO-based composite anodes exhibit a higher specific capacity, rate performance, and cycling stability than a single ZnO anode. The synergistic effects between ZnO and the other MOs or carbon-based materials can explain the superior electrochemical characteristics of these ZnO-based composites. This review also discusses some of their current limitations.

2021 ◽  
pp. 2150031
Author(s):  
Hai Li ◽  
Chunxiang Lu

As anode material for lithium-ion batteries, graphite has the disadvantage of relatively low specific capacity. In this work, a simple yet effective strategy to overcome the disadvantages by using a composite of flake graphite (FG) and small-sized graphene (SG) has been developed. The FG/SG composite prepared by dispersing FG and SG (90:10 w/w) in ethanol and drying delivers much higher specific capacity than that of individual component except for improved rate capability. More surprisingly, FG/SG composite delivers higher reversible capacity than its theoretical value calculated according to the theoretical capacities of graphite and graphene. Therefore, a synergistic effect between FG and SG in lithium storage is clearly discovered. To explain it, we propose a model that abundant nanoscopic cavities were formed due to physical adhesion between FG and SG and could accommodate extra lithium.


Nanoscale ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 5812-5816 ◽  
Author(s):  
Jinyun Liu ◽  
Xirong Lin ◽  
Tianli Han ◽  
Qianqian Lu ◽  
Jiawei Long ◽  
...  

Metallic germanium (Ge) as the anode can deliver a high specific capacity and high rate capability in lithium ion batteries.


RSC Advances ◽  
2016 ◽  
Vol 6 (109) ◽  
pp. 107768-107775 ◽  
Author(s):  
Yew Von Lim ◽  
Zhi Xiang Huang ◽  
Ye Wang ◽  
Fei Hu Du ◽  
Jun Zhang ◽  
...  

Tungsten disulfide nanoflakes grown on plasma activated three dimensional graphene networks. The work features a simple growth of TMDs-based LIBs anode materials that has excellent rate capability, high specific capacity and long cycling stability.


2007 ◽  
Vol 52 (8) ◽  
pp. 2829-2840 ◽  
Author(s):  
Volodymyr G. Khomenko ◽  
Viacheslav Z. Barsukov

2017 ◽  
Vol 8 ◽  
pp. 1297-1306 ◽  
Author(s):  
Jin Zhang ◽  
Yibing Cai ◽  
Xuebin Hou ◽  
Xiaofei Song ◽  
Pengfei Lv ◽  
...  

Titanium dioxide (TiO2) nanofibers have been widely applied in various fields including photocatalysis, energy storage and solar cells due to the advantages of low cost, high abundance and nontoxicity. However, the low conductivity of ions and bulk electrons hinder its rapid development in lithium-ion batteries (LIB). In order to improve the electrochemical performances of TiO2 nanomaterials as anode for LIB, hierarchically porous TiO2 nanofibers with different tetrabutyl titanate (TBT)/paraffin oil ratios were prepared as anode for LIB via a versatile single-nozzle microemulsion electrospinning (ME-ES) method followed by calcining. The experimental results indicated that TiO2 nanofibers with the higher TBT/paraffin oil ratio demonstrated more axially aligned channels and a larger specific surface area. Furthermore, they presented superior lithium-ion storage properties in terms of specific capacity, rate capability and cycling performance compared with solid TiO2 nanofibers for LIB. The initial discharge and charge capacity of porous TiO2 nanofibers with a TBT/paraffin oil ratio of 2.25 reached up to 634.72 and 390.42 mAh·g−1, thus resulting in a coulombic efficiency of 61.51%; and the discharge capacity maintained 264.56 mAh·g−1 after 100 cycles, which was much higher than that of solid TiO2 nanofibers. TiO2 nanofibers with TBT/paraffin oil ratio of 2.25 still obtained a high reversible capacity of 204.53 mAh·g−1 when current density returned back to 40 mA·g−1 after 60 cycles at increasing stepwise current density from 40 mA·g−1 to 800 mA·g−1. Herein, hierarchically porous TiO2 nanofibers have the potential to be applied as anode for lithium-ion batteries in practical applications.


RSC Advances ◽  
2015 ◽  
Vol 5 (10) ◽  
pp. 7356-7362 ◽  
Author(s):  
Minchan Li ◽  
Wenxi Wang ◽  
Mingyang Yang ◽  
Fucong Lv ◽  
Lujie Cao ◽  
...  

A novel microcuboid-shaped C–Fe3O4 assembly consisting of ultrafine nanoparticles derived from Fe–MOFs exhibits a greatly enhanced performance with high specific capacity, excellent cycling stability and good rate capability as anode materials for lithium ion batteries.


2013 ◽  
Vol 36 ◽  
pp. 29-32 ◽  
Author(s):  
Ran Yi ◽  
Jiantao Zai ◽  
Fang Dai ◽  
Mikhail L. Gordin ◽  
Donghai Wang

2015 ◽  
Vol 3 (16) ◽  
pp. 8683-8692 ◽  
Author(s):  
Lingyun Guo ◽  
Qiang Ru ◽  
Xiong Song ◽  
Shejun Hu ◽  
Yudi Mo

The as-prepared pineapple-shaped ZCO with a porous nanostructure shows a high specific capacity, superior rate capability and excellent cycling stability when used as an anode material for LIBs.


2021 ◽  
Vol 11 (24) ◽  
pp. 11713
Author(s):  
Marcella Bini ◽  
Marco Ambrosetti ◽  
Daniele Spada

Ferrites, a broad class of ceramic oxides, possess intriguing physico-chemical properties, mainly due to their unique structural features, that, during these last 50–60 years, made them the materials of choice for many different applications. They are, indeed, applied as inductors, high-frequency materials, for electric field suppression, as catalysts and sensors, in nanomedicine for magneto-fluid hyperthermia and magnetic resonance imaging, and, more recently, in electrochemistry. In particular, ZnFe2O4 and its solid solutions are drawing scientists’ attention for the application as anode materials for lithium-ion batteries (LIBs). The main reasons are found in the low cost, abundance, and environmental friendliness of both Zn and Fe precursors, high surface-to-volume ratio, relatively short path for Li-ion diffusion, low working voltage of about 1.5 V for lithium extraction, and the high theoretical specific capacity (1072 mA h g−1). However, some drawbacks are represented by fast capacity fading and poor rate capability, resulting from a low electronic conductivity, severe agglomeration, and large volume change during lithiation/delithiation processes. In this review, the main synthesis methods of spinels will be briefly discussed before presenting the most recent and promising electrochemical results on ZnFe2O4 obtained with peculiar morphologies/architectures or as composites, which represent the focus of this review.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7822
Author(s):  
Nayoung Ku ◽  
Jaeyeong Cheon ◽  
Kyunbae Lee ◽  
Yeonsu Jung ◽  
Seog-Young Yoon ◽  
...  

Carbon nanotube fiber (CNTF) is a highly conductive and porous platform to grow active materials of lithium-ion batteries (LIB). Here, we prepared SnO2@CNTF based on sulfonic acid-functionalized CNTF to be used in LIB anodes without binder, conductive agent, and current collector. The SnO2 nanoparticles were grown on the CNTF in an aqueous system without a hydrothermal method. The functionalized CNTF exhibited higher conductivity and effective water infiltration compared to the raw CNTF. Due to the enhanced water infiltration, the functionalized CNTF became SnO2@CNTF with an ideal core–shell structure coated with a thin SnO2 layer. The specific capacity and rate capability of SnO2@-functionalized CNTF were superior to those of SnO2@raw CNTF. Since the SnO2@CNTF-based anode was free of a binder, conductive agent, and current collector, the specific capacity of the anode studied in this work was higher than that of conventional anodes.


Sign in / Sign up

Export Citation Format

Share Document