scholarly journals Minute-Made, High-Efficiency Nanostructured Bi2Te3 via High-Throughput Green Solution Chemical Synthesis

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2053
Author(s):  
Bejan Hamawandi ◽  
Hazal Batili ◽  
Moon Paul ◽  
Sedat Ballikaya ◽  
Nuzhet I. Kilic ◽  
...  

Scalable synthetic strategies for high-quality and reproducible thermoelectric (TE) materials is an essential step for advancing the TE technology. We present here very rapid and effective methods for the synthesis of nanostructured bismuth telluride materials with promising TE performance. The methodology is based on an effective volume heating using microwaves, leading to highly crystalline nanostructured powders, in a reaction duration of two minutes. As the solvents, we demonstrate that water with a high dielectric constant is as good a solvent as ethylene glycol (EG) for the synthetic process, providing a greener reaction media. Crystal structure, crystallinity, morphology, microstructure and surface chemistry of these materials were evaluated using XRD, SEM/TEM, XPS and zeta potential characterization techniques. Nanostructured particles with hexagonal platelet morphology were observed in both systems. Surfaces show various degrees of oxidation, and signatures of the precursors used. Thermoelectric transport properties were evaluated using electrical conductivity, Seebeck coefficient and thermal conductivity measurements to estimate the TE figure-of-merit, ZT. Low thermal conductivity values were obtained, mainly due to the increased density of boundaries via materials nanostructuring. The estimated ZT values of 0.8–0.9 was reached in the 300–375 K temperature range for the hydrothermally synthesized sample, while 0.9–1 was reached in the 425–525 K temperature range for the polyol (EG) sample. Considering the energy and time efficiency of the synthetic processes developed in this work, these are rather promising ZT values paving the way for a wider impact of these strategic materials with a minimum environmental impact.

Cryogenics ◽  
2021 ◽  
pp. 103300
Author(s):  
Yang Biao ◽  
Xi Xiaotong ◽  
Liu Xuming ◽  
Xu Xiafan ◽  
Chen Liubiao ◽  
...  

2009 ◽  
Vol 24 (2) ◽  
pp. 430-435 ◽  
Author(s):  
D. Li ◽  
H.H. Hng ◽  
J. Ma ◽  
X.Y. Qin

The thermoelectric properties of Nb-doped Zn4Sb3 compounds, (Zn1–xNbx)4Sb3 (x = 0, 0.005, and 0.01), were investigated at temperatures ranging from 300 to 685 K. The results showed that by substituting Zn with Nb, the thermal conductivities of all the Nb-doped compounds were lower than that of the pristine β-Zn4Sb3. Among the compounds studied, the lightly substituted (Zn0.995Nb0.005)4Sb3 compound exhibited the best thermoelectric performance due to the improvement in both its electrical resistivity and thermal conductivity. Its figure of merit, ZT, was greater than the undoped Zn4Sb3 compound for the temperature range investigated. In particular, the ZT of (Zn0.995Nb0.005)4Sb3 reached a value of 1.1 at 680 K, which was 69% greater than that of the undoped Zn4Sb3 obtained in this study.


1961 ◽  
Vol 39 (7) ◽  
pp. 1029-1039 ◽  
Author(s):  
M. J. Laubitz

A method is given for exact mathematical analysis of linear heat flow systems used in measuring thermal conductivity at high temperatures. It is shown that a popular version of such a system is very sensitive to the alignment of its components, which seriously limits the temperature range of its satisfactory use.


1961 ◽  
Vol 83 (2) ◽  
pp. 125-131 ◽  
Author(s):  
Jerome L. Novotny ◽  
Thomas F. Irvine

By measuring laminar recovery factors in a high velocity gas stream, experimental determinations were made of the Prandtl number of carbon dioxide over a temperature range from 285 to 450 K and of carbon-dioxide air mixtures at an average temperature of 285 K with a predicted maximum error of 1.5 per cent. Thermal conductivity values were deduced from these Prandtl numbers and compared with literature values measured by other methods. Using intermolecular force constants determined from literature experimental data, viscosities, thermal conductivities, and Prandtl numbers were calculated for carbon-dioxide air mixtures over the temperature range 200 to 1500 deg for mixture ratios from pure air to pure carbon dioxide.


2001 ◽  
Author(s):  
Scott T. Huxtable ◽  
Alexis R. Abramson ◽  
Arun Majumdar ◽  
Chang-Lin Tien ◽  
Chris LaBounty ◽  
...  

Abstract The cross-plane and in-plane thermal conductivity of four Si/Si0.7Ge0.3 superlattice structures with periods from 45 Å to 300 Å are experimentally investigated using the 3-ω measurement technique. The experiment is conducted over a temperature range from 70 to 340 K. Results indicate that the cross-plane thermal conductivity decreases with decreasing period thickness (i.e. increasing number of interfaces per unit length). The superlattice with the shortest period exhibits a cross-plane thermal conductivity similar to that of a SiGe alloy. The in-plane thermal conductivity follows a similar decreasing trend with period thickness for the three larger period superlattices, but jumps to higher values for the shortest period superlattice. Additionally, the in-plane conductivity can be 3–4 times higher than the cross-plane value.


2013 ◽  
Vol 55 (1) ◽  
pp. 235-239 ◽  
Author(s):  
A. V. Inyushkin ◽  
A. N. Taldenkov ◽  
A. V. Gusev ◽  
A. M. Gibin ◽  
V. A. Gavva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document