scholarly journals Growth Mechanism of Micro/Nano Metal Dendrites and Cumulative Strategies for Countering Its Impacts in Metal Ion Batteries: A Review

Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2476
Author(s):  
Brindha Ramasubramanian ◽  
M. V. Reddy ◽  
Karim Zaghib ◽  
Michel Armand ◽  
Seeram Ramakrishna

Metal-ion batteries are capable of delivering high energy density with a longer lifespan. However, they are subject to several issues limiting their utilization. One critical impediment is the budding and extension of solid protuberances on the anodic surface, which hinders the cell functionalities. These protuberances expand continuously during the cyclic processes, extending through the separator sheath and leading to electrical shorting. The progression of a protrusion relies on a number of in situ and ex situ factors that can be evaluated theoretically through modeling or via laboratory experimentation. However, it is essential to identify the dynamics and mechanism of protrusion outgrowth. This review article explores recent advances in alleviating metal dendrites in battery systems, specifically alkali metals. In detail, we address the challenges associated with battery breakdown, including the underlying mechanism of dendrite generation and swelling. We discuss the feasible solutions to mitigate the dendrites, as well as their pros and cons, highlighting future research directions. It is of great importance to analyze dendrite suppression within a pragmatic framework with synergy in order to discover a unique solution to ensure the viability of present (Li) and future-generation batteries (Na and K) for commercial use.

2020 ◽  
Author(s):  
Chao Xu ◽  
Katharina Marker ◽  
Juhan Lee ◽  
Amoghavarsha Mahadevegowda ◽  
Philip J. Reeves ◽  
...  

<div><div><div><p>Ni-rich layered cathode materials are among the most promising candidates for high energy density Li-ion batteries. However, the low cobalt containing materials suffer from rapid degradation, the underlying mechanism of which is still poorly understood. We herein report a novel structure-drive degradation mechanism for the NMC811(LiNi0.8Mn0.1Co0.1O2) cathode, in which a proportion of the material exhibits a lowered accessible state-of-charge (SoC) at the end of charge after repetitive cycling, i.e. becomes fatigued. Ex-situ and operando long- duration high-resolution X-ray diffraction enabled by a laser-thinned coin cell design clearly shows the emergence of the fatigued phase and the increase in its population as the cycling progresses. We show that the fatigue degradation is a structure-driven process rather than originating solely due to kinetic limitations or inter-granular cracking. No bulk phase transformations or increase in Li/Ni antisite mixing were observed by diffraction; no significant change in the local structure or Li-ion mobility of the bulk were observed by 7Li solid-state NMR spectroscopy. Instead, we propose that the fatigue process is a result of the high interfacial lattice strain between the reconstructed surface and the bulk layered structure when the latter is at SoCs above a distinct threshold of ~75 %. This mechanism is expected to be universal to Ni-rich layer cathodes, and our findings provide a fundamental guide for designing effective approaches to mitigate such deleterious processes.</p></div></div></div>


2020 ◽  
Author(s):  
Chao Xu ◽  
Katharina Marker ◽  
Juhan Lee ◽  
Amoghavarsha Mahadevegowda ◽  
Philip J. Reeves ◽  
...  

<div><div><div><p>Ni-rich layered cathode materials are among the most promising candidates for high energy density Li-ion batteries. However, the low cobalt containing materials suffer from rapid degradation, the underlying mechanism of which is still poorly understood. We herein report a novel structure-drive degradation mechanism for the NMC811(LiNi0.8Mn0.1Co0.1O2) cathode, in which a proportion of the material exhibits a lowered accessible state-of-charge (SoC) at the end of charge after repetitive cycling, i.e. becomes fatigued. Ex-situ and operando long- duration high-resolution X-ray diffraction enabled by a laser-thinned coin cell design clearly shows the emergence of the fatigued phase and the increase in its population as the cycling progresses. We show that the fatigue degradation is a structure-driven process rather than originating solely due to kinetic limitations or inter-granular cracking. No bulk phase transformations or increase in Li/Ni antisite mixing were observed by diffraction; no significant change in the local structure or Li-ion mobility of the bulk were observed by 7Li solid-state NMR spectroscopy. Instead, we propose that the fatigue process is a result of the high interfacial lattice strain between the reconstructed surface and the bulk layered structure when the latter is at SoCs above a distinct threshold of ~75 %. This mechanism is expected to be universal to Ni-rich layer cathodes, and our findings provide a fundamental guide for designing effective approaches to mitigate such deleterious processes.</p></div></div></div>


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1690
Author(s):  
Jian Qiao ◽  
Peng Yu ◽  
Yanxiong Wu ◽  
Taixi Chen ◽  
Yixin Du ◽  
...  

Amorphous alloys have emerged as important materials for precision machinery, energy conversion, information processing, and aerospace components. This is due to their unique structure and excellent properties, including superior strength, high elasticity, and excellent corrosion resistance, which have attracted the attention of many researchers. However, the size of the amorphous alloy components remains limited, which affects industrial applications. Significant developments in connection with this technology are urgently needed. Laser welding represents an efficient welding method that uses a laser beam with high energy-density for heating. Laser welding has gradually become a research hotspot as a joining method for amorphous alloys due to its fast heating and cooling rates. In this compact review, the current status of research into amorphous-alloy laser welding technology is discussed, the influence of technological parameters and other welding conditions on welding quality is analyzed, and an outlook on future research and development is provided. This paper can serve as a useful reference for both fundamental research and engineering applications in this field.


2018 ◽  
Vol 10 (10) ◽  
pp. 3560 ◽  
Author(s):  
Xian Zhao ◽  
Siqi Wang ◽  
Xiaoyue Wang

In order to satisfy the increasing energy demand and deal with the environmental problem caused by the conventional energy vehicle; the new energy vehicle (NEV), especially the electric vehicle (EV), has attracted increasing attention and the corresponding research has developed rapidly in recent years. The electric vehicle requires a battery with high energy density and frequent charging. In order to ensure high performance of the electric vehicle; the reliability of its charging system is extremely important. In this paper; an overview of the research on electric vehicle charging system reliability from 1998 to 2017 is presented from a bibliometric perspective. This study provides a comprehensive analysis of the current research climate and the emerging trends from the following four aspects: basic characteristics of publication outputs; including annual publication outputs and document types; collaboration analysis of countries/territories; institutions and authors; co-citation analysis of cited authors and cited references; co-occurrence analysis of subjects and keywords. By using CiteSpace; the collaboration relationship; co-citation and co-occurrence networks are shown clearly. According to the analysis results; studies in this research field will keep developing rapidly in the near future and several future research directions are proposed in the conclusions.


2021 ◽  
Vol 1027 ◽  
pp. 42-47
Author(s):  
Hao Ran Zheng

Metal lithium anodes, with extremely high specific capacity, low density, and lowest potential, are considered to be the most promising anode materials for next-generation high-energy density batteries. However, in the process of repeated plating and stripping of lithium, lithium dendrites are easily grown on the surface of the metal lithium anode, which greatly reduces the capacity of the battery, even causes hidden safety risks and shortens the battery life. This paper reviews the modification methods of lithium anodes based on the growth process of lithium dendrites, and introduces several current modification methods, including electrolyte additives, artificial SEI and new structure of lithium anodes. Finally, the future research direction and development trend of metal lithium anodes are prospected.


Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1523
Author(s):  
Lilian Schwich ◽  
Michael Küpers ◽  
Martin Finsterbusch ◽  
Andrea Schreiber ◽  
Dina Fattakhova-Rohlfing ◽  
...  

In the coming years, the demand for safe electrical energy storage devices with high energy density will increase drastically due to the electrification of the transportation sector and the need for stationary storage for renewable energies. Advanced battery concepts like all-solid-state batteries (ASBs) are considered one of the most promising candidates for future energy storage technologies. They offer several advantages over conventional Lithium-Ion Batteries (LIBs), especially with regard to stability, safety, and energy density. Hardly any recycling studies have been conducted, yet, but such examinations will play an important role when considering raw materials supply, sustainability of battery systems, CO2 footprint, and general strive towards a circular economy. Although different methods for recycling LIBs are already available, the transferability to ASBs is not straightforward due to differences in used materials and fabrication technologies, even if the chemistry does not change (e.g., Li-intercalation cathodes). Challenges in terms of the ceramic nature of the cell components and thus the necessity for specific recycling strategies are investigated here for the first time. As a major result, a recycling route based on inert shredding, a subsequent thermal treatment, and a sorting step is suggested, and transferring the extracted black mass to a dedicated hydrometallurgical recycling process is proposed. The hydrometallurgical approach is split into two scenarios differing in terms of solubility of the ASB-battery components. Hence, developing a full recycling concept is reached by this study, which will be experimentally examined in future research.


2021 ◽  
Author(s):  
Fangfang Chen ◽  
Xiaoen Wang ◽  
Michel Armand ◽  
Maria Forsyth

Abstract Polymer electrolytes provide a safe solution for all-solid-state high energy density batteries. Materials that meet the simultaneous requirement of high ionic conductivity and high transference number remain a challenge, in particular for new battery chemistries beyond Lithium such as Na, K and Mg. Herein, we demonstrate the versatility of a polymeric ionic liquid (PolyIL) as a solid-state solvent to achieve this goal for both Na and K. Using molecular simulations, we predict and elucidate fast metal ion transport in PolyILs through a structural diffusion mechanism in a polymer-in-salt environment, facilitating a high transference number. Experimental validation of these computational designed Na and K polymer electrolytes gives high ionic conductivities of 1.010-3 S cm-1 at 80 oC and an exceptional Na+ transference number of ~0.57. Electrochemical cycling of a sodium anode also demonstrates an ultra-low overpotential of 40 mV and stable long term performance of more than 100 hours in a symmetric cell. PolyIL-based polymer-in-salt strategies for novel solid-state electrolytes thus offer a promising route to design high performance next generation sustainable battery chemistries.


Author(s):  
Benjamin Strehle ◽  
Tanja Zünd ◽  
Sabrina Sicolo ◽  
Aleksandr Kiessling ◽  
Volodymyr Baran ◽  
...  

Abstract Li- and Mn-rich layered oxides (LMR-NCMs) are promising cathode active materials (CAMs) in future lithium-ion batteries (LIBs) due to their high energy density. However, the material undergoes a unique open circuit voltage (OCV) hysteresis between charge and discharge after activation, which compromises its roundtrip energy efficiency and affects the thermal management requirements for an LIB system. The hysteresis is believed to be caused by transition metal (TM) migration and/or by oxygen redox activities. Using in-situ X-ray powder diffraction (XPD), we monitor the lattice parameters of over-lithiated NCMs during the initial cycles and show that also the lattice parameters feature a distinct path dependence. When correlated to the OCV instead of the state of charge (SOC), this hysteresis vanishes for the unit cell volume and gives a linear correlation that is identical for different degrees of over-lithiation. We further aimed at elucidating the role of TM migration on the hysteresis phenomena by applying joint Rietveld refinements to a series of ex-situ XPD and neutron powder diffraction (NPD) samples. We critically discuss the limitations of this approach and compare the results with DFT simulations, showing that the quantification of TM migration in LMR-NCMs by diffraction is not as straightforward as often believed.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 247 ◽  
Author(s):  
Diem ◽  
Fenk ◽  
Bill ◽  
Burghard

Nowadays, research on electrochemical storage systems moves into the direction of post-lithium-ion batteries, such as aluminum-ion batteries, and the exploration of suitable materials for such batteries. Vanadium pentoxide (V2O5) is one of the most promising host materials for the intercalation of multivalent ions. Here, we report on the fabrication of a binder-free and self-supporting V2O5 micrometer-thick paper-like electrode material and its use as the cathode for rechargeable aluminum-ion batteries. The electrical conductivity of the cathode was significantly improved by a novel in-situ and self-limiting copper migration approach into the V2O5 structure. This process takes advantage of the dissolution of Cu by the ionic liquid-based electrolyte, as well as the presence of two different accommodation sites in the nanostructured V2O5 available for aluminum-ions and the migrated Cu. Furthermore, the advanced nanostructured cathode delivered a specific discharge capacity of up to ~170 mAh g−1 and the reversible intercalation of Al3+ for more than 500 cycles with a high Coulomb efficiency reaching nearly 100%. The binder-free concept results in an energy density of 74 Wh kg−1, which shows improved energy density in comparison to the so far published V2O5-based cathodes. Our results provide valuable insights for the future design and development of novel binder-free and self-supporting electrodes for rechargeable multivalent metal-ion batteries associating a high energy density, cycling stability, safety and low cost.


Sign in / Sign up

Export Citation Format

Share Document