scholarly journals Review on Techniques for Thermal Characterization of Graphene and Related 2D Materials

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2787
Author(s):  
Jing Liu ◽  
Pei Li ◽  
Hongsheng Zheng

The discovery of graphene and its analog, such as MoS2, has boosted research. The thermal transport in 2D materials gains much of the interest, especially when graphene has high thermal conductivity. However, the thermal properties of 2D materials obtained from experiments have large discrepancies. For example, the thermal conductivity of single layer suspended graphene obtained by experiments spans over a large range: 1100–5000 W/m·K. Apart from the different graphene quality in experiments, the thermal characterization methods play an important role in the observed large deviation of experimental data. Here we provide a critical review of the widely used thermal characterization techniques: the optothermal Raman technique and the micro-bridge method. The critical issues in the two methods are carefully revised and discussed in great depth. Furthermore, improvements in Raman-based techniques to investigate the energy transport in 2D materials are discussed.

Author(s):  
Keivan Etessam-Yazdani ◽  
Mehdi Asheghi

Experimental measurement of thermal conductivity is considered the most reliable tool for the study of phonon transport in ultra-thin silicon structures. While there has been a great success in thermal conductivity measurement of ultra-thin silicon layers down to 20 nm over the past decade, it is not clear if the existing techniques and tools can be extended to the measurements of sun 100 Angstrom layers. In this paper, an analytical study of the feasibility of electrical Joule heating and thermometry in patterned metal bridges is presented. It is concluded that thermal conductivity of silicon layers as thin as 5 nm can be obtained (uncertainty 20%) by performing steady-state measurements using an on-substrate nanoheater structure. The thermal characterization of silicon layers as thin as 1 nm may be possible using frequency domain measurements.


2018 ◽  
Vol 9 (2) ◽  
pp. 163-168 ◽  
Author(s):  
Á. Lakatos ◽  
I. Deák ◽  
U. Berardi

The development of high performance insulating materials incorporating nanotechnologies has enabled considerable decrease in the effective thermal conductivity. Besides the use of conventional insulating materials, such as mineral fibers, the adoption of new nano-technological materials such as aerogel, vacuum insulation panels, graphite expanded polystyrene, is growing. In order to reduce the thermal conductivity of polystyrene insulation materials, during the manufacturing, nano/micro-sized graphite particles are added to the melt of the polystyrene grains. The mixing of graphite flakes into the polystyrene mould further reduces the lambda value, since graphite parts significantly reflect the radiant part of the thermal energy. In this study, laboratory tests carried out on graphite insulation materials are presented. Firstly, thermal conductivity results are described, and then sorption kinetic curves at high moisture content levels are shown. The moisture up-taking behaviour of the materials was investigated with a climatic chamber where the relative humidity was 90% at 293 K temperature. Finally, calorific values of the samples are presented after combusting in a bomb calorimeter.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1807
Author(s):  
Ridong Wang ◽  
Tianyu Wang ◽  
Hamidreza Zobeiri ◽  
Dachao Li ◽  
Xinwei Wang

As they hold extraordinary mechanical and physical properties, two-dimensional (2D) atomic layer materials, including graphene, transition metal dichalcogenides, and MXenes, have attracted a great deal of attention. The characterization of energy and charge transport in these materials is particularly crucial for their applications. As noncontact methods, Raman-based techniques are widely used in exploring the energy and charge transport in 2D materials. In this review, we explain the principle of Raman-based thermometry in detail. We critically review different Raman-based techniques, which include steady state Raman, time-domain differential Raman, frequency-resolved Raman, and energy transport state-resolved Raman techniques constructed in the frequency domain, space domain, and time domain. Detailed outlooks are provided about Raman-based energy and charge transport in 2D materials and issues that need special attention.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5700
Author(s):  
Maatouk Khoukhi ◽  
Abeer Dar Saleh ◽  
Ahmed Hassan ◽  
Shaimaa Abdelbaqi

Although many advanced insulation materials have been recently developed, very few are eco-friendly and their production requires a substantial amount of energy and complex manufacturing processes. To address this issue, a bio-based thermal insulation material was developed using short- and long-grained puffed rice. A set of experiments was subsequently carried out to identify the best rice type and the optimal range for the most influential parameters (sample amount, temperature, and moisture level). Our findings revealed that short-grained rice exhibited greater puffing ability and was thus adopted in further material optimization experiments. These assessments indicated that the most optimal thermal conductivity of the insulation material and the highest puffing ratio was attained at 12–15% moisture, 260–270 °C temperature, and 15–18 g sample weight. The thermal properties, including thermal conductivity and fire reaction, and thermal performance of samples obtained using these parameters were similar to those of common insulation materials.


1999 ◽  
Vol 121 (3) ◽  
pp. 528-536 ◽  
Author(s):  
S. W. Indermuehle ◽  
R. B. Peterson

A phase-sensitive measurement technique for determining two independent thermal properties of a thin dielectric film is presented. The technique involves measuring a specimen’s front surface temperature response to a periodic heating signal over a range of frequencies. The phase shift of the temperature response is fit to an analytical model using thermal diffusivity and effusivity as fitting parameters, from which the thermal conductivity and specific heat can be calculated. The method has been applied to 1.72-μm thick films of SiO2 thermally grown on a silicon substrate. Thermal properties were obtained through a temperature range from 25°C to 300°C. One interesting outcome stemming from analysis of the experimental data is the ability to extract both thermal conductivity and specific heat of a thin film from phase information alone. The properties obtained with this method are slightly below the bulk values for fused silica with a measured room temperature (25°C) thermal conductivity of 1.28 ± 0.12 W/m-K.


2013 ◽  
Vol 709 ◽  
pp. 192-196
Author(s):  
Shi Ming Zhang ◽  
Bing Teng ◽  
De Gao Zhong ◽  
Bing Tao Zhang ◽  
Shu Jie Zhuang ◽  
...  

A new mixed laser crystal, Yb0.006Y0.923Lu0.071VO4, has been successfully grown using the Czochralski method. X-ray powder diffraction analysis shows that the crystal has ZrSiO4 structure. Density, thermal expansion coefficients, specific heat and thermal diffusion coefficients were measured, and the thermal conductivity coefficients were determined.


2012 ◽  
Vol 512-515 ◽  
pp. 1753-1756
Author(s):  
Zi Hua Wu ◽  
Hua Qing Xie ◽  
Qing Feng Zeng

Polyparaphenylene/Zn0.925Co0.075O(PPP/Zn0.925Co0.075O) nanocomposites were synthesized by using a sol-gel method and their thermal conductivity properties were measured. The XRD pattern of Zn0.925Co0.075O shows the single phase wurtzite structure. The SEM images show that the lighter-contrast area is PPP and the dark-contrast area is the polycrystalline of Zn0.925Co0.075O. The increase in the band edge is a clear indication for the incorporation of Co inside the ZnO lattice. The observation of three additional absorption peaks provided evidence that the 3d7 high-spin configuration of Co2+ under the tetrahedral crystal field was probably formed by neighboring O2- ions. With the increase of the PPP content, the thermal conductivity of nanocomposite samples is smaller than those of pure Zn0.925Co0.075O. Due to the high density of interfaces and grain boundaries present in the nanocomposites, the scattering of phonon across a broad wavelength spectrum was enhanced. This suppressed the lattice thermal conductivity of the nanocomposites significantly.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4549
Author(s):  
Laura Farina ◽  
Kemal Sumser ◽  
Gerard van Rhoon ◽  
Sergio Curto

Tissue mimicking phantoms are frequently used in hyperthermia applications for device and protocol optimization. Unfortunately, a commonly experienced limitation is that their precise thermal properties are not available. Therefore, in this study, the thermal properties of three currently used QA phantoms for deep hyperthermia are measured with an “off-shelf” commercial thermal property analyzer. We have measured averaged values of thermal conductivity (k = 0.59 ± 0.07 Wm−1K−1), volumetric heat capacity (C = 3.85 ± 0.45 MJm−3K−1) and thermal diffusivity (D = 0.16 ± 0.02 mm2s−1). These values are comparable with reported values of internal organs, such as liver, kidney and muscle. In addition, a sensitivity study of the performance of the commercial sensor is conducted. To ensure correct thermal measurements, the sample under test should entirely cover the length of the sensor, and a minimum of 4 mm of material parallel to the sensor in all directions should be guaranteed.


Sign in / Sign up

Export Citation Format

Share Document