scholarly journals Visualization of Spatial Charge in Thermally Poled Glasses via Nanoparticles Formation

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2973
Author(s):  
Ekaterina Babich ◽  
Ekaterina Lubyankina ◽  
Vladimir Kaasik ◽  
Alexey Mozharov ◽  
Ivan Mukhin ◽  
...  

It is shown for the first time that the vacuum poling of soda-lime silicate glass and the subsequent processing of the glass in a melt containing silver ions results in the formation of silver nanoparticles buried in the subanodic region of the glass at a depth of 800–1700 nm. We associate the formation of nanoparticles with the transfer of electrons from negatively charged non-bridging oxygen atoms to silver ions, their reduction as well as their clustering. The nanoparticles do not form in the ion-depleted area just beneath the glass surface, which indicates the absence of a spatial charge (negatively charged oxygen atoms) in this region of the vacuum-poled glass. In consequence, the neutralization of the glass via switching of non-bridging oxygen bonds to bridging ones, which leads to the release of oxygen, should occur in parallel with the shift of calcium, magnesium, and sodium ions into the depth of the glass.

2021 ◽  
Vol 2086 (1) ◽  
pp. 012152
Author(s):  
E A Lubyankina ◽  
D V Raskhodchikov ◽  
E S Babich ◽  
V P Kaasik ◽  
A A Lipovskii

Abstract We demonstrate for the first time that the results of ion exchange processing of thermally poled soda-lime glass essentially depend on the poling conditions. In particular, the processing of vacuum-poled soda-lime glass in silver-sodium nitrate melt results in the diffusion and reduction of silver ions followed by clustering silver nanoparticles in the subsurface layer of the glass after either ion-exchange or additional heat treatment of the ion-exchanged samples. Poling in air atmosphere with deposited gold film anode prevents silver ions penetration in the glass, but electric field stimulated diffusion of gold in this configuration leads to the formation of gold nanoparticles in the glass after heat treatment. It is also shown that corona poling of the glass in air atmosphere does not completely block silver penetration.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
M. A. El-Sheikh

The water soluble photoinitiator (PI) 4-(trimethyl ammonium methyl) benzophenone chloride is used for the first time in the synthesis of silver nanoparticles (AgNPs). A new green synthesis method involves using PI/UV system, carboxymethyl starch (CMS), silver nitrate, and water. A mechanism of the reduction of silver ions to AgNPs by PI/UV system as well as by the newly born aldehydic groups was proposed. The synthesis process was assessed by UV-vis spectra and TEM of AgNPs colloidal solution. The highest absorbance was obtained using CMS, PI and AgNO3concentrations of 10 g/L, 1 g/L, and 1 g/L, respectively; 40°C; 60 min; pH 7; and a material : liquor ratio 1 : 20. AgNPs so-obtained were stable in aqueous solution over a period of three weeks at room temperature (~25°C) and have round shape morphology. The sizes of synthesized AgNPs were in the range of 1–21 nm and the highest counts % of these particles were for particles of 6–10 and 1–3 nm, respectively.


Author(s):  
N Yan ◽  
Ben Zhong Tang ◽  
Wen-Xiong Wang

Silver nanoparticles (AgNPs) can penetrate cells and distribute in different organelles, resulting in adverse health effects. In the present study, for the first time, we quantitatively monitored the AgNPs and...


2008 ◽  
Vol 53 (5) ◽  
pp. 695-699 ◽  
Author(s):  
XiuChun Yang ◽  
ZhiHui Li ◽  
WeiJie Li ◽  
JingXian Xu ◽  
ZhiWei Dong ◽  
...  

2010 ◽  
Vol 25 (4) ◽  
pp. 701-707 ◽  
Author(s):  
Tatsuya Suetsugu ◽  
Takashi Wakasugi ◽  
Kohei Kadono

To fabricate graded-index optical elements by silver staining, we investigated the behavior of ion incorporation in aluminoborosilicate glasses, in which the contents of Al2O3 and Na2O were the same (in mol%). The amount of silver incorporated into the aluminoborosilicate glasses by the staining at 320 °C for 12 h was 5 to 10 times larger than that incorporated into the soda-lime silicate and borosilicate glasses. The diffusion depth of the incorporated silver ions was approximately 80 μm, which was also much deeper than that of the soda-lime silicate and borosilicate glasses. The coloration of the glasses was suppressed, particularly for the glass with the low content of Na2O. The concentration of the incorporated silver ions at the glass surface was 2 × 1021 atom/cm3 for the 37.5SiO2·25Al2O3·25Na2O·12.5B2O3 glass, corresponding to the replacement of sodium ions (20%). The refractive indices near the stained surfaces increased by 0.04 to 0.06. These values were comparable with those of the soda-lime silicate and borosilicate glasses.


Sign in / Sign up

Export Citation Format

Share Document