scholarly journals Mechanism of Amyloid Gel Formation by Several Short Amyloidogenic Peptides

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3129
Author(s):  
Oxana V. Galzitskaya ◽  
Olga M. Selivanova ◽  
Elena Y. Gorbunova ◽  
Leila G. Mustaeva ◽  
Viacheslav N. Azev ◽  
...  

Under certain conditions, many proteins/peptides are capable of self-assembly into various supramolecular formations: fibrils, films, amyloid gels. Such formations can be associated with pathological phenomena, for example, with various neurodegenerative diseases in humans (Alzheimer’s, Parkinson’s and others), or perform various functions in the body, both in humans and in representatives of other domains of life. Recently, more and more data have appeared confirming the ability of many known and, probably, not yet studied proteins/peptides, to self-assemble into quaternary structures. Fibrils, biofilms and amyloid gels are promising objects for the developing field of research of nanobiotechnology. To develop methods for obtaining nanobiomaterials with desired properties, it is necessary to study the mechanism of such structure formation, as well as the influence of various factors on this process. In this work, we present the results of a study of the structure of biogels formed by four 10-membered amyloidogenic peptides: the VDSWNVLVAG peptide (AspNB) and its analogue VESWNVLVAG (GluNB), which are amyloidogenic fragments of the glucantransferase Bgl2p protein from a yeast cell wall, and amyloidogenic peptides Aβ(31–40), Aβ(33–42) from the Aβ(1–42) peptide. Based on the analysis of the data, we propose a possible mechanism for the formation of amyloid gels with these peptides.

Prion ◽  
2013 ◽  
Vol 7 (2) ◽  
pp. 175-184 ◽  
Author(s):  
Evgeny E. Bezsonov ◽  
Minna Groenning ◽  
Oxana V. Galzitskaya ◽  
Anton A. Gorkovskii ◽  
Gennady V. Semisotnov ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 925 ◽  
Author(s):  
Kristina Endres

The term “amyloid” refers to proteinaceous deposits of peptides that might be generated from larger precursor proteins e.g., by proteolysis. Common to these peptides is a stable cross-β dominated secondary structure which allows self-assembly, leading to insoluble oligomers and lastly to fibrils. These highly ordered protein aggregates have been, for a long time, mainly associated with human neurodegenerative diseases such as Alzheimer’s disease (Amyloid-β peptides). However, they also exert physiological functions such as in release of deposited hormones in human beings. In the light of the rediscovery of our microbial commensals as important companions in health and disease, the fact that microbes also possess amyloidogenic peptides is intriguing. Transmission of amyloids by iatrogenic means or by consumption of contaminated meat from diseased animals is a well-known fact. What if also our microbial commensals might drive human amyloidosis or suffer from our aggregated amyloids? Moreover, as the microbial amyloids are evolutionarily older, we might learn from these organisms how to cope with the sword of Damocles forged of endogenous, potentially toxic peptides. This review summarizes knowledge about the interplay between human amyloids involved in neurodegenerative diseases and microbial amyloids.


Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


Author(s):  
Giulia Maria Pires dos Santos ◽  
Gustavo Ramalho Cardoso dos Santos ◽  
Mariana Ingrid Dutra da Silva Xisto ◽  
Rodrigo Rollin-Pinheiro ◽  
Andréa Regina de Souza Baptista ◽  
...  

2008 ◽  
Vol 56 (24) ◽  
pp. 11854-11861 ◽  
Author(s):  
Rémi Pradelles ◽  
Herve Alexandre ◽  
Anne Ortiz-Julien ◽  
David Chassagne

Sign in / Sign up

Export Citation Format

Share Document