scholarly journals Graded Morphologies and the Performance of PffBT4T-2OD:PC71BM Devices Using Additive Choice

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3367
Author(s):  
Hugo Gaspar ◽  
Andrew J. Parnell ◽  
Gabriel E. Pérez ◽  
Júlio C. Viana ◽  
Stephen M. King ◽  
...  

The impact of several solvent processing additives (1-chloronaphthalene, methylnaphthalene, hexadecane, 1-phenyloctane, and p-anisaldehyde), 3% v/v in o-dichlorobenzene, on the performance and morphology of poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3‴-di(2-octyldodecyl)-2,2′,5′,22033,5″,2‴-quaterthiophen-5,5‴-diyl)] (PffBT4T-2OD):[6,6]-phenyl-C71-butyric acid methyl ester (PC71BM)-based polymer solar cells was investigated. Some additives were shown to enhance the power conversion efficiency (PCE) by ~6%, while others decreased the PCE by ~17–25% and a subset of the additives tested completely eliminated any power conversion efficiency and the operation as a photovoltaic device. Grazing-Incidence Wide Angle X-ray Scattering (GIWAXS) revealed a clear stepwise variation in the crystallinity of the systems when changing the additive between the two extreme situations of maximum PCE (1-chloronaphthalene) and null PCE (hexadecane). Small-Angle Neutron Scattering (SANS) revealed that the morphology of devices with PCE ~0% was composed of large domains with correlation lengths of ~30 nm, i.e., much larger than the typical exciton diffusion length (~12 nm) in organic semiconductors. The graded variations in crystallinity and in nano-domain size observed between the two extreme situations (1-chloronaphthalene and hexadecane) were responsible for the observed graded variations in device performance.

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Hanyu Wang ◽  
Xiao Wang ◽  
Pu Fan ◽  
Xin Yang ◽  
Junsheng Yu

The effect of molecular doping with TIPS-pentacene on the photovoltaic performance of polymer solar cells (PSCs) with a structure of ITO/ZnO/poly(3-hexylthiophene-2,5-diyl) (P3HT) : [6,6]-phenyl C71-butyric acid methyl ester (PC71BM) : TIPS-pentacene/MoOx/Ag was systematically investigated by adjusting TIPS-pentacene doping ratios ranged from 0.3 to 1.2 wt%. The device with 0.6 wt% TIPS-pentacene exhibited the enhanced short-circuit current and fill factor by 1.23 mA/cm2and 7.8%, respectively, resulting in a maximum power conversion efficiency of 4.13%, which is one-third higher than that of the undoped one. The photovoltaic performance improvement was mainly due to the balanced charge carrier mobility, enhanced crystallinity, and matched cascade energy level alignment in TIPS-pentacene doped active layer, resulting in the efficient charge separation, transport, and collection.


2017 ◽  
Vol 8 (14) ◽  
pp. 2227-2234 ◽  
Author(s):  
Tao Wang ◽  
Lihui Jiang ◽  
Jun Yuan ◽  
Liuliu Feng ◽  
Zhi-Guo Zhang ◽  
...  

Using a fluoropyrido[3,4-b]pyrazine based 2D-conjugated polymer as an electron donor in polymer solar cells, a power conversion efficiency of 6.2% is obtained, which is the highest PCE among the PP-based polymers reported to date.


2017 ◽  
Vol 10 (10) ◽  
pp. 2212-2221 ◽  
Author(s):  
Zhaojun Li ◽  
Xiaofeng Xu ◽  
Wei Zhang ◽  
Xiangyi Meng ◽  
Zewdneh Genene ◽  
...  

High-performance ternary all-polymer solar cells with outstanding efficiency of 9.0% are realized by incorporating two donor and one acceptor polymers with complementary absorption and proper energy level alignment.


Author(s):  
Ritesh Kant Gupta ◽  
Rabindranath Garai ◽  
Maimur Hossain ◽  
Mohammad Adil Afroz ◽  
Dibashmoni Kalita ◽  
...  

Achieving high power conversion efficiency (PCE) polymer solar cells (PSCs) has been very challenging and the ultimate goal for their commercialization. Precise investigation of the active layer morphology and newer...


Sign in / Sign up

Export Citation Format

Share Document