scholarly journals Effect of Borpolymer on Mechanical and Structural Parameters of Ultra-High Molecular Weight Polyethylene

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3398
Author(s):  
Sakhayana N. Danilova ◽  
Afanasy A. Dyakonov ◽  
Andrey P. Vasilev ◽  
Aitalina A. Okhlopkova ◽  
Aleksei G. Tuisov ◽  
...  

The paper presents the results of studying the effect of borpolymer (BP) on the mechanical properties, structure, and thermodynamic parameters of ultra-high molecular weight polyethylene (UHMWPE). Changes in the mechanical characteristics of polymer composites material (PCM) are confirmed and complemented by structural studies. X-ray crystallography (XRC), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and infrared spectroscopy (IR) were used to study the melting point, morphology and composition of the filler, which corresponds to the composition and data of the certificate of the synthesized BP. Tensile and compressive mechanical tests were carried out in accordance with generally accepted standards (ASTM). It is shown that BP is an effective modifier for UHMWPE, contributing to a significant increase in the deformation and strength characteristics of the composite: tensile strength of PCM by 56%, elongation at break by 28% and compressive strength at 10% strain by 65% compared to the initial UHMWPE, due to intensive changes in the supramolecular structure of the matrix. Structural studies revealed that BP does not chemically interact with UHMWPE, but due to its high adhesion to the polymer, it acts as a reinforcing filler. SEM was used to establish the formation of a spherulite supramolecular structure of polymer composites.

2018 ◽  
Vol 89 (16) ◽  
pp. 3362-3373 ◽  
Author(s):  
Shenglei Xiao ◽  
Charles Lanceron ◽  
Peng Wang ◽  
Damien Soulat ◽  
Hang Gao

Recently, triaxial braids made from ultra-high molecular weight polyethylene (UHMWPE) have been recognized as one of the most popular composite reinforcements in the aerospace and defense fields. To further explore the mechanical characteristics of this material, a detailed experimental study on tensile behavior is reported in this paper. The triaxial braids show a “double-peak” phenomenon in tensile strength and deformation, caused by axial yarns and the in-plane shearing of bias yarns. The evolution of the braiding angle, measured during these tensile tests, is discussed according to the braiding parameters (initial braiding angle, number of axial yarns). Using the high conductivity properties of the UHMWPE material, the temperature caused by inter-yarn friction during tensile tests is also studied. This temperature is related to the evolution of the braiding angle. The temperature increases with the increasing number of axial yarns and decreases with increasing braiding angle. This study provides an experimental database on the influence of braiding parameters on the tensile behavior of triaxial braids.


2016 ◽  
Vol 33 (3) ◽  
Author(s):  
Mica Grujicic ◽  
Jennifer Snipes ◽  
S. Ramaswami ◽  
Vasudeva Avuthu ◽  
Chian-Fong Yen ◽  
...  

Purpose To overcome the problem of inferior through-the-thickness mechanical properties displayed by armor-grade composites based on 2-D reinforcement architectures, armor-grade composites based on 3D fiber-reinforcement architectures have recently been investigated experimentally. Design/methodology/approach The subject of the present work is armor-grade composite materials reinforced using ultra-high-molecular-weight polyethylene fibers and having four (two 2D and two 3D) prototypical architectures, as well as the derivation of the corresponding material models. The effect of the reinforcement architecture is accounted for by constructing the appropriate unit cells (within which the constituent materials and their morphologies are represented explicitly) and subjecting them to a series of virtual mechanical tests. The results obtained are used within a post-processing analysis to derive and parameterize the corresponding homogenized-material models. One of these models (specifically, the one for 0°/90° cross-collimated fiber architecture) was directly validated by comparing its predictions with the experimental counterparts. The other models are validated by examining their physical soundness and details of their predictions. Lastly, the models are integrated as user-material subroutines, and linked with a commercial finite-element package, in order to carry out a transient non-linear dynamics analysis of ballistic transverse impact of armor-grade composite-material panels with different reinforcement architectures. Findings It is found that the reinforcement architecture plays a critical role in the overall ballistic limit of the armor panel, as well as in its structural and damage/failure response. Originality/value To the authors’ knowledge, the present work is the first reported attempt to assess, computationally, the utility and effectiveness of 3D fiber-reinforcement architectures for ballistic impact applications.


Author(s):  
S P Ho ◽  
L Riester ◽  
M Drews ◽  
T Boland ◽  
M LaBerge

This paper investigates the elastic modulus and hardness of untreated and treated compression-moulded ultra-high molecular weight polyethylene (UHMWPE) tibial inserts of a total knee replacement (TKR) prosthesis. Investigations were carried out at a nanoscale using a Nanoindenter™ at penetration depths of 100, 250 and 500 nm. The nanomechanical properties of surface and subsurface layers of the compression-moulded tibial inserts were studied using the untreated UHMWPE. The nanomechanical properties of intermediate and core layers of the compression-moulded tibial insert were studied using the cryoultrasectioned and etched UHMWPE treated samples. The cryoultrasectioning temperature (-150°C) of the samples was below the glass transition temperature, Tg(-122± 2°C), of UHMWPE. The measurement of the mechanical response of crystalline regions within the nanostructure of UHMWPE was accomplished by removing the amorphous regions using a time-varying permanganic-etching technique. The percentage crystallinity of UHMWPE was measured using differential scanning calorimetry (DSC) and the Tg of UHMWPE was determined by dynamic mechanical analysis (DMA). Atomic force microscopy (AFM) was used to assess the effect of surface preparation on the samples average surface roughness, Ra. In this study, it was demonstrated that the untreated UHMWPE samples had a significantly lower ( p<0.0001) elastic modulus and hardness relative to treated UHMWPE cryoultrasectioned and etched samples at all penetration depths. No significant difference ( p > 0.05) in elastic modulus and hardness between the cryoultrasectioned and etched samples was observed. These results suggest that the surface nanomechanical response of an UHMWPE insert in a total joint replacement (TJR) prosthesis is significantly lower compared with the bulk of the material. Additionally, it was concluded that the nanomechanical response of material with higher percentage crystallinity (67 per cent) was predominantly determined by the crystalline regions within the semi-crystalline UHMWPE nanostructure.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2545
Author(s):  
Tarek Dayyoub ◽  
Aleksey Maksimkin ◽  
Fedor Senatov ◽  
Sergey Kaloshkin ◽  
Natalia Anisimova ◽  
...  

Three types of glue based on thiol-ene reaction, polyvinyl alcohol (PVA)/cellulose, and phenol formaldehyde were prepared and applied on modified ultra-high molecular weight polyethylene (UHMWPE) samples grafted by cellulose. In comparison with unmodified UHMWPE samples, T-peel tests on the modified and grafted UHMWPE films showed an increase in the peel strength values for the glues based on thiol-ene reaction, PVA/cellulose, and phenol formaldehyde by 40, 29, and 41 times, respectively. The maximum peel strength value of 0.62 Kg/cm was obtained for the glue based on phenol formaldehyde. Mechanical tests for the cylindrical multi-UHMWPE forms samples, made of porous UHMWPE as a trabecular layer and an armored layer (cortical layer) that consists of bulk and UHMWPE films, indicated an improvement in the mechanical properties of these samples for all glue types, as a result of the UHMWPE films existence and the increase in the number of their layers. The maximum compressive yield strength and compressive modulus values for the armored layer (bulk and six layers of the UHMWPE films using the glue based on thiol-ene reaction) were 44.1 MPa (an increase of 17%) and 1130 MPa (an increase of 36%), respectively, in comparison with one armored layer of bulk UHMWPE. A hemocompatibility test carried out on these glues clarified that the modified UHMWPE grafted by cellulose with glues based on PVA/cellulose and thiol-ene reaction were classified as biocompatible materials. These multi-UHMWPE forms composites can be considered a promising development for joint reconstruction.


2013 ◽  
Vol 1453 ◽  
Author(s):  
Sofía Vazquez-Rodriguez ◽  
Gloria E. Rodríguez-Vázquez ◽  
Selene Sepulveda-Guzman ◽  
Martín E. Reyes-Melo ◽  
Aaron Morelos-Gomez ◽  
...  

ABSTRACTUltra-high molecular weight polyethylene/graphite nanocomposites were prepared by high-energy cryogenic milling followed by syntering. Microstructure changes shows that graphite was reduced to graphite nanoplatelets by high-energy cryomilling and partial exfoliation of graphite to few layered graphene nanoplatelets occurred in a small extent. The resulting nanocomposites revealed high electrical conductivity and good mechanical performance. Thermal characterization of the nanocomposites was also carried out by differential scanning calorimetry.


Sign in / Sign up

Export Citation Format

Share Document