scholarly journals High-Level Oxygen Reduction Catalysts Derived from the Compounds of High-Specific-Surface-Area Pine Peel Activated Carbon and Phthalocyanine Cobalt

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3429
Author(s):  
Lei Zhao ◽  
Ziwei Lan ◽  
Wenhao Mo ◽  
Junyu Su ◽  
Huazhu Liang ◽  
...  

Non-platinum carbon-based catalysts have attracted much more attention in recent years because of their low cost and outstanding performance, and are regarded as one of the most promising alternatives to precious metal catalysts. Activated carbon (AC), which has a large specific surface area (SSA), can be used as a carrier or carbon source at the same time. In this work, stable pine peel bio-based materials were used to prepare large-surface-area activated carbon and then compound with cobalt phthalocyanine (CoPc) to obtain a high-performance cobalt/nitrogen/carbon (Co-N-C) catalyst. High catalytic activity is related to increasing the number of Co particles on the large-specific-area activated carbon, which are related with the immersing effect of CoPc into the AC and the rational decomposed temperature of the CoPc ring. The synergy with N promoting the exposure of CoNx active sites is also important. The Eonset of the catalyst treated with a composite proportion of AC and CoPc of 1 to 2 at 800 °C (AC@CoPc-800-1-2) is 1.006 V, higher than the Pt/C (20 wt%) catalyst. Apart from this, compared with other AC/CoPc series catalysts and Pt/C (20 wt%) catalyst, the stability of AC/CoPc-800-1-2 is 87.8% in 0.1 M KOH after 20,000 s testing. Considering the performance and price of the catalyst in a practical application, these composite catalysts combining biomass carbon materials with phthalocyanine series could be widely used in the area of catalysts and energy storage.

Author(s):  
Lei Zhao ◽  
Ziwei Lan ◽  
Junyu Su ◽  
Huazhu Liang ◽  
Jiayu Yao ◽  
...  

Compared with precious metal catalysts, non-platinum catalysts have the advantages of low cost and high performance. Among them, the activated carbon (AC) with a large specific surface area (SSA) can be used as a carrier or as a carbon source of nonprecious metal/carbon system catalyst at the same time. Therefore, this paper uses cheap pine peel bio-based materials to prepare large surface area activated carbon and then compound with cobalt phthalocyanine (CoPc) to obtain a high-performance cobalt/nitrogen/carbon catalyst. The merits include AC@CoPc composite catalysts are prepared by precisely controlling the composite proportion of AC and CoPc, the atomically dispersed Co nanoparticles form and synergistically with N promote the exposure of CoNx active sites, and the Eonset of the catalyst treated with a composite proportion of AC and CoPc of 1 to 2 at 800 °C (AC@CoPc-800-1-2) is 1.01 V, which is higher than Pt/C (20 wt%) catalyst. Apart from this, the stability is 87.8% in 0.1 M KOH after 20000 s testing in compared with other AC@CoPc series catalysts and Pt/C (20 wt%) catalyst. Considering from the performance and price of the catalyst in practical application, these composite catalysts combine biomass carbon materials with phthalocyanine series, which will be widely used in the area of nonprecious metal catalysts.


RSC Advances ◽  
2017 ◽  
Vol 7 (69) ◽  
pp. 43780-43788 ◽  
Author(s):  
Mengjiao Xu ◽  
Danyang Li ◽  
Yan Yan ◽  
Teng Guo ◽  
Huan Pang ◽  
...  

Porous high specific surface area activated carbon with co-doping N, S and P for high-performance supercapacitors.


2018 ◽  
Vol 6 (20) ◽  
pp. 9716-9722 ◽  
Author(s):  
Ya-Nan Chen ◽  
Yibo Guo ◽  
Huijuan Cui ◽  
Zhaojun Xie ◽  
Xin Zhang ◽  
...  

MnO@Co–N/C composites were fabricated with excellent bifunctional catalytic activity and outstanding performance for both liquid- and solid-state Zn–air batteries. The excellent electrocatalytic activities are attributed to the unique 1D nanowire structure with abundant Co–Nx active sites and a high specific surface area.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hao Cheng ◽  
Xuenuan Li ◽  
Tianhao Li ◽  
Danfeng Qin ◽  
Tingfan Tang ◽  
...  

Polyacrylonitrile (PAN) and (CH3COO)2Zn were used as raw materials, and carbon nanofibers (CNFs) with high specific surface area were successfully prepared by an electrospinning method. A new method of electrochemiluminescence detection of azithromycin was established by modifying the glassy carbon electrode (GCE). Under the optimal conditions, the electrochemical behavior and electrochemiluminescence behavior of the Ru(bpy)32+-AZM system on the modified electrode were investigated. Owing to the large specific area, more active sites, and promotion of electron transfer, the sensor exhibits high electrocatalytic activity, high sensitivity, a good linear relationship ranging from 8.0 × 10 − 8 to 1.0 × 10 − 4  mol/L, and a low detection limit ( 6.52 × 10 − 8  mol/L). In addition, the good recoveries indicate that the sensor was a promising device for the detection of azithromycin in real samples.


2021 ◽  
Vol 45 (12) ◽  
pp. 5712-5719
Author(s):  
Yongxiang Zhang ◽  
Peifeng Yu ◽  
Mingtao Zheng ◽  
Yong Xiao ◽  
Hang Hu ◽  
...  

Porous carbons with a high specific surface area (2314–3470 m2 g−1) are prepared via a novel KCl-assisted activation strategy for high-performance supercapacitor.


2021 ◽  
Vol 1036 ◽  
pp. 130-136
Author(s):  
Ting Qun Tan ◽  
Lei Geng ◽  
Yan Lin ◽  
Yan He

In order to prepare carbon nanotubes with high specific surface area, small diameter, low resistivity, high purity and high catalytic activity, the Fe-Mo/Al2O3 catalyst was prepared based on the microreactor. The influence of different Fe/Al molar ratios on the catalyst and the carbon nanotubes prepared was studied through BET, SEM, TEM and other detection methods. Studies have shown that the pore structure of the catalyst is dominated by slit pores at a lower Fe/Al molar ratio. The catalytic activity is the highest when the Fe/Al molar ratio is 1:1, reaching 74.1%. When the Fe/Al molar ratio is 1:2, the catalyst has a higher specific surface area, the maximum pore size is 8.63 nm, and the four-probe resistivity and ash content of the corresponding carbon nanotubes are the lowest. The higher the proportion of aluminum, the higher the specific surface area of the catalyst and the carbon nanotubes, and the finer the diameter of the carbon nanotubes, which gradually tends to relax. The results show that when the Fe/Al molar ratio is 1:2, although the catalytic activity of the catalyst is not the highest, the carbon nanotubes prepared have the best performance.


Sign in / Sign up

Export Citation Format

Share Document