scholarly journals Sesquiterpenoids from Tussilago farfara Flower Bud Extract for the Eco-Friendly Synthesis of Silver and Gold Nanoparticles Possessing Antibacterial and Anticancer Activities

Nanomaterials ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 819 ◽  
Author(s):  
You Jeong Lee ◽  
Kwangho Song ◽  
Song-Hyun Cha ◽  
Seonho Cho ◽  
Yeong Shik Kim ◽  
...  

Sesquiterpenoids from the flower bud extract of Tussilago farfara were effectively utilized as a reducing agent for eco-friendly synthesis of silver and gold nanoparticles. The silver and gold nanoparticles had a characteristic surface plasmon resonance at 416 nm and 538 nm, respectively. Microscopic images revealed that both nanoparticles were spherical, and their size was measured to be 13.57 ± 3.26 nm for the silver nanoparticles and 18.20 ± 4.11 nm for the gold nanoparticles. The crystal structure was determined to be face-centered cubic by X-ray diffraction. Colloidal stability of the nanoparticle solution was retained in a full medium, which was used in the cell culture experiment. The antibacterial activity result demonstrated that the silver nanoparticles showed better activity (two- to four-fold enhancement) than the extract alone on both Gram-positive and Gram-negative bacteria. Interestingly, the highest antibacterial activity was obtained against vancomycin-resistant Enterococci Van-A type Enterococcus faecium. Cytotoxicity on cancer cell lines confirmed that gold nanoparticles were more cytotoxic than silver nanoparticles. The highest cytotoxicity was observed on human pancreas ductal adenocarcinoma cells. Therefore, both nanoparticles synthesized with the sesquiterpenoids from T. farfara flower bud extract can be applicable as drug delivery vehicles of anticancer or antibacterial agents for future nanomedicine applications.

2020 ◽  
Vol 4 (2) ◽  

Metal nanoparticles possess an extensive scientific and technological significance due to their unique physiochemical properties and their potential applications in different fields like medicine. Silver and gold nanoparticles have shown to have antibacterial and cytotoxic activities. Conventional methods used in the synthesis of the metal nanoparticles involve use of toxic chemicals making them unsuitable for use in medical field. In our continued effort to explore for simple and eco-friendly methods to synthesize the metal nanoparticles, we here describe synthesis and characterization of gold and silver nanoparticles using Gonaderma lucidum, wild non-edible medicinal mushroom. G. lucidum mushroom contain bioactive compounds which can be involved in the reduction, capping and stabilization of the nanoparticles. Antibacterial activity analysis was done on E. coli and S. aureus. The synthesis was done on ultrasonic bath. Characterization of the metal nanoparticles was done by UV-VIS., High Resolution Transmission Electron Microscope (HRTEM) and FTIR. HRTEM analysis showed that both silver and gold nanoparticles were spherical in shape with an average size of 15.82±3.69 nm for silver and 24.73±5.124nm for gold nanoparticles (AuNPs). FTIR analysis showed OH and -C=C- stretching vibrations, an indication of presence of functional groups of biomolecules capping both gold and silver nanoparticles. AgNPs showed inhibition zones of 15.5±0.09mm and 13.3±0.14mm while AuNPs had inhibition zones of 14.510±0.35 and 13.3±0.50mm on E. coli and S. aureus respectively. The findings indicate the potential use of AgNPs and AuNPs in development of drugs in management of pathogenic bacteria.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Niloufar Hajarian Rezazadeh ◽  
Foad Buazar ◽  
Soheila Matroodi

AbstractThe present study reports the synergistic antibacterial activity of biosynthesized silver nanoparticles (AgNPs) with the aid of a combination of chitosan and seaweed-derived polyphenols as a green synthetic route. Under optimum synthesis conditions, the rapid color change from yellowish to dark brown and UV–visible absorption peak at 425 confirmed the initial formation of AgNPs. DLS, TEM, XRD, and EDX analyses revealed the spherical shape of pure biogenic AgNPs with a mean diameter size of 12 nm ± 1.5 nm, and a face-centered cubic crystal structure, respectively. FTIR and TGA results indicated the significant contribution of chitosan and polyphenol components into silver ions bioreduction and thermal stability of freshly formed AgNPs. Long-term colloidal stability of AgNPs was obtained after 6-month storage at room temperature. The bio-prepared AgNPs possessed a negative surface charge with a zeta potential value of − 27 mV. In contrast to naked chemical silver nanoparticles, the green Ag nanosamples demonstrated the distinct synergistic antibacterial in vitro toward all selected human pathogens presumably due to the presence of high content of biomolecules on their surface. The results show that synergy between chitosan and polyphenol results in the enhancement of bactericidal properties of biogenic AgNPs. We also highlighted the underlying mechanism involved in AgNPs formation based on nucleophile–electrophile interaction.


2019 ◽  
Vol 31 (12) ◽  
pp. 2804-2810
Author(s):  
Anti Kolonial Prodjosantoso ◽  
Oktanio Sigit Prawoko ◽  
Maximus Pranjoto Utomo ◽  
Lis Permana Sari

In this article, the synthesis of silver nanoparticles through a reduction reaction process using Salacca zalacca extract is reported. The AgNPs were characterized using X-ray diffraction, transmission electron microscopy, Fourier transform infrared and UV-visible spectrophotometry methods. The AgNPs antibacterial activity was determined against of Gram-positive bacteria (Staphylococcus epidermidis) and Gram-negative bacteria (Escherichia coli). The main functional groups contained in Salacca zalacca extract are carbonyl, hydroxyl and nitrile groups, which are believed to reduce the silver ions to metal. The surface plasmon resonance values of brownish red AgNPs are in the range of 410 nm to 460 nm. The structure of AgNPs is face centered cubic (FCC). The diameter of silver nanoparticles crystallite is 14.2 ± 2.6 nm. The AgNPs growth inhibition zones of Escherichia coli and Staphylococcus epidermidis are 9.6 mm and 9.2 mm, respectively.


2013 ◽  
Vol 54 (2) ◽  
pp. 196-202 ◽  
Author(s):  
Palanivel Velmurugan ◽  
Mahudunan Iydroose ◽  
Sang-Myung Lee ◽  
Min Cho ◽  
Jung-Hee Park ◽  
...  

2015 ◽  
Vol 39 (10) ◽  
pp. 8080-8086 ◽  
Author(s):  
Muhammad Nisar ◽  
Shujaat Ali Khan ◽  
Muhammad Raza Shah ◽  
Ajmal Khan ◽  
Umar Farooq ◽  
...  

The fluoroquinolone drug moxifloxacin (Mox) has been used to protect silver and gold nanoparticles. The nano-conjugates exhibited urease inhibition and antibacterial activity.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Kero Jemal ◽  
B. V. Sandeep ◽  
Sudhakar Pola

Allophylus serratusmediated silver nanoparticles biosynthesis, characterization, and antimicrobial activity were described. The synthesis of silver nanoparticles was confirmed by visual observation: UV-Vis spectrum, X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), and Fourier Transform Infra-Red (FTIR). UV-Vis spectroscopy studies showed that the absorption spectra of synthesized silver nanoparticles from leaf and callus extracts had absorbance peak range of 440 nm and 445 nm, respectively. The X-RD pattern revealed the presence of crystalline, dominantly spherical silver nanoparticles in the sample having size ranging from 42 to 50 nm. The XRD peaks 38.2°, 44.1°, 64.1°, and 77.0° for leaf extract and 38.1°, 44.3°, 64.5°, 77.5°, and 81.33° for callus extract can be assigned the plane of silver crystals (111), (200), (220), and (311), respectively, and indicate that the silver nanoparticles are face-centered, cubic, and crystalline in nature. SEM and EDS analysis also confirmed the presence of silver nanoparticles. The FTIR results showed the presence of some biomolecules in extracts that act as reducing and capping agent for silver nanoparticles biosynthesis. The synthesized silver nanoparticles showed significant antibacterial activity againstKlebsiella pneumoniaeandPseudomonas aeruginosa.


2021 ◽  
Author(s):  
Mert Saraçoğlu ◽  
Begüm Bacınoğlu ◽  
Sıddıka Mertdinç ◽  
Servet Timur

Abstract In this study, sericin extracted from Bombyx mori silk cocoons was integrated into the well-known Tollens’ method for synthesizing Ag-NPs. Sericin successfully acted as a stabilizer while silver amine complex [Ag(NH3)2]+ was reduced by maltose. As a result, silver nanoparticles with high stability are formed. Possible functional groups related to the stabilization of NPs were investigated by Fourier-transforms infrared spectroscopy (FT-IR). Ag-Ser NPs were characterized by using particle size measurements based on dynamic light scattering (DLS) and transmission electron microscopy (TEM). According to the characterization investigations, Ag-Ser NPs have characteristic (111) face-centered cubic (FFC) plane and were spherical in shape with a narrow size distribution of 20.23 ±6.25 nm. Overall, the sericin-modified Tollens’ method for synthesizing Ag-NPs offers a simple and non-toxic production method to form nanoparticles. Colloidal stability of nanoparticles displays an essential role since their enhanced nano-properties can be diminished by an increase in size due to aggregation and agglomeration. Therefore, the effect of pH on particle stability was investigated through the surface charge of Ag-Ser NPs that was measured using a Zeta-potential analyzer. Results obtained from this study may extend the applicability of silver nanoparticles in biotechnological researches and a potential synthesis route for the application of Ag-Ser NPs as aseptic and therapeutic usages.


Sign in / Sign up

Export Citation Format

Share Document