scholarly journals Human Milk Oligosaccharides: Health Benefits, Potential Applications in Infant Formulas, and Pharmacology

Nutrients ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 266 ◽  
Author(s):  
Michał Wiciński ◽  
Ewelina Sawicka ◽  
Jakub Gębalski ◽  
Karol Kubiak ◽  
Bartosz Malinowski

The first months of life are a special time for the health development and protection of infants. Breastfeeding is the natural and best way of feeding an infant, and positively influences their development and health. Breast milk provides the ideal balance of nutrients for the infant and contains countless bioactive ingredients such as immunoglobulins, hormones, oligosaccharides and others. Human milk oligosaccharides (HMOs) are a very important and interesting constituent of human milk, and are the third most abundant solid component after lactose and lipids. They are a structurally and biologically diverse group of complex indigestible sugars. This article will discuss the mechanisms of action of HMOs in infants, such as their anti-adhesive properties, properties modulating the immune system, and impact on bacterial flora development. Many health benefits result from consuming HMOs. They also may decrease the risk of infection by their interactions with viruses, bacteria or protozoa. The commercial use of HMOs in infant formula, future directions, and research on the use of HMOs as a therapy will be discussed.

Nutrients ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1461 ◽  
Author(s):  
Stine Bering

This review focuses on the evidence for health benefits of human milk oligosaccharides (HMOs) for preterm infants to stimulate gut adaptation and reduce the incidence of necrotizing enterocolitis (NEC) in early life. The health benefits of breastfeeding are partly explained by the abundant HMOs that serve as prebiotics and immunomodulators. Gut immaturity in preterm infants leads to difficulties in tolerating enteral feeding and bacterial colonization and a high sensitivity to NEC, particularly when breast milk is insufficient. Due to the immaturity of the preterm infants, their response to HMOs could be different from that in term infants. The concentration of HMOs in human milk is highly variable and there is no evidence to support a specifically adapted high concentration in preterm milk. Further, the gut microbiota is not only different but also highly variable after preterm birth. Studies in pigs as models for preterm infants indicate that HMO supplementation to formula does not mature the gut or prevent NEC during the first weeks after preterm birth and the effects may depend on a certain stage of gut maturity. Supplemented HMOs may become more important for gut protection in the preterm infants when the gut has reached a more mature phase.


Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2912
Author(s):  
Yalin Zhou ◽  
Han Sun ◽  
Kaifeng Li ◽  
Chengdong Zheng ◽  
Mengnan Ju ◽  
...  

The aim of this systematic review was to summarize concentrations of human milk oligosaccharides (HMOs) in the Chinese population. We searched articles originally published in both Chinese and English. When compiling data, lactation was categorized into five stages. We found that 6′-sialyllactose, lacto-N-tetraose, and lacto-N-neotetraose decreased over lactation. Conversely, 3′-fucosyllactose increased over lactation. Our study represents the first systematic review to summarize HMO concentrations in Chinese population. Our findings not only provide data on HMO profiles in Chinese population but suggest future directions in the study of the metabolism of HMOs.


2020 ◽  
Vol 124 (8) ◽  
pp. 824-831
Author(s):  
K. Salli ◽  
E. Söderling ◽  
J. Hirvonen ◽  
U. K. Gürsoy ◽  
A. C. Ouwehand

AbstractHuman milk oligosaccharides, such as 2′-fucosyllactose (2′-FL), and galacto-oligosaccharides (GOS), a prebiotic carbohydrate mixture, are being increasingly added to infant formulas, necessitating the understanding of their impact on the oral microbiota. Here, for the first time, the effects of 2′-FL and GOS on the planktonic growth and adhesion characteristics of the caries-associated oral pathogen Streptococcus mutans were assessed, and the results were compared against the effects of xylitol, lactose and glucose. There were differences in S. mutans growth between 2′-FL and GOS. None of the three S. mutans strains grew with 2′-FL, while they all grew with GOS as well as lactose and glucose. Xylitol inhibited S. mutans growth. The adhesion of S. mutans CI 2366 to saliva-coated hydroxyapatite was reduced by 2′-FL and GOS. Exopolysaccharide-mediated adhesion of S. mutans DSM 20523 to a glass surface was decreased with 2′-FL, GOS and lactose, and the adhesion of strain CI 2366 strain was reduced only by GOS. Unlike GOS, 2′-FL did not support the growth of any S. mutans strain. Neither 2′-FL nor GOS enhanced the adhesive properties of the S. mutans strains, but they inhibited some of the tested strains. Thus, the cariogenic tendency may vary between infant formulas containing different types of oligosaccharides.


Nutrients ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1105 ◽  
Author(s):  
Magdalena Orczyk-Pawiłowicz ◽  
Jolanta Lis-Kuberka

Apart from optimal nutritional value, human milk is the feeding strategy to support the immature immunological system of developing newborns and infants. The most beneficial dietary carbohydrate components of breast milk are human milk oligosaccharides (HMOs) and glycoproteins (HMGs), involved in both specific and nonspecific immunity. Fucosylated oligosaccharides represent the largest fraction of human milk oligosaccharides, with the simplest and the most abundant being 2′-fucosyllactose (2′-FL). Fucosylated oligosaccharides, as well as glycans of glycoproteins, as beneficial dietary sugars, elicit anti-adhesive properties against fucose-dependent pathogens, and on the other hand are crucial for growth and metabolism of beneficial bacteria, and in this aspect participate in shaping a healthy microbiome. Well-documented secretor status related differences in the fucosylation profile of HMOs and HMGs may play a key but underestimated role in assessment of susceptibility to fucose-dependent pathogen infections, with a potential impact on applied clinical procedures. Nevertheless, due to genetic factors, about 20% of mothers do not provide their infants with beneficial dietary carbohydrates such as 2′-FL and other α1,2-fucosylated oligosaccharides and glycans of glycoproteins, despite breastfeeding them. The lack of such structures may have important implications for a wide range of aspects of infant well-being and healthcare. In light of the above, some artificial mixtures used in infant nutrition are supplemented with 2′-FL to more closely approximate the unique composition of maternal milk, including dietary-derived fucosylated oligosaccharides and glycoproteins.


2020 ◽  
Vol 11 ◽  
Author(s):  
Lianghui Cheng ◽  
Mensiena B. G. Kiewiet ◽  
Madelon J. Logtenberg ◽  
Andre Groeneveld ◽  
Arjen Nauta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document