scholarly journals In Vitro Hypocholesterolemic Effect of Coffee Compounds

Nutrients ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 437
Author(s):  
Filipe Manuel Coreta-Gomes ◽  
Guido R. Lopes ◽  
Cláudia P. Passos ◽  
Inês M. Vaz ◽  
Fernanda Machado ◽  
...  

(1) Background: Cholesterol bioaccessibility is an indicator of cholesterol that is available for absorption and therefore can be a measure of hypocholesterolemic potential. In this work, the effect of commercial espresso coffee and coffee extracts on cholesterol solubility are studied in an in vitro model composed by glycodeoxycholic bile salt, as a measure of its bioaccessibility. (2) Methods: Polysaccharide extracts from coffees obtained with different extraction conditions were purified by selective precipitation with ethanol, and their sugars content were characterized by GC-FID. Hexane extraction allowed us to obtain the coffee lipids. Espresso coffee samples and extracts were tested regarding their concentration dependence on the solubility of labeled 13C-4 cholesterol by bile salt micelles, using quantitative 13C NMR. (3) Results and Discussion: Espresso coffee and coffee extracts were rich in polysaccharides, mainly arabinogalactans and galactomannans. These polysaccharides decrease cholesterol solubility and, simultaneously, the bile salts’ concentration. Coffee lipid extracts were also found to decrease cholesterol solubility, although not affecting bile salt concentration. (4) Conclusions: Coffee soluble fiber, composed by the arabinogalactans and galactomannans, showed to sequester bile salts from the solution, leading to a decrease in cholesterol bioaccessibility. Coffee lipids also decrease cholesterol bioaccessibility, although the mechanism of action identified is the co-solubilization in the bile salt micelles. The effect of both polysaccharides and lipids showed to be additive, representing the overall effect observed in a typical espresso coffee. The effect of polysaccharides and lipids on cholesterol bioaccessibility should be accounted on the formulation of hypocholesterolemic food ingredients.

2019 ◽  
Vol 174 ◽  
pp. 493-500 ◽  
Author(s):  
Julieta N. Naso ◽  
Fernando A. Bellesi ◽  
Víctor M. Pizones Ruiz-Henestrosa ◽  
Ana M.R. Pilosof

1965 ◽  
Vol 208 (2) ◽  
pp. 363-369 ◽  
Author(s):  
M. R. Playoust ◽  
Leon Lack ◽  
I. M. Weiner

The efficiency of intestinal absorption of bile salts was evaluated by studying the rate of disappearance of radioactivity from the bile of dogs after the intravenous administration of sodium taurocholate-24-C14. Bile was sampled through an indwelling tube in the gall bladder. One day after a high-fat meal normal dogs retained 48% of the radioactivity; dogs with resection of the jejunum retained 48%, whereas those with resection of the ileum retained only 3% in the bile. This is consistent with previous observations that the ileum is the site of bile salt absorption in vitro and in anesthetized animals. Animals with resection of the ileum exhibited significant steatorrhea; however, three-fourths of the ingested fat was absorbed in spite of almost complete failure to absorb bile salts. This indicates that fat and bile salts are not normally absorbed together. Elimination of enterohepatic circulation of bile salts by resection of the ileum contributes to the observed steatorrhea.


2019 ◽  
Vol 37 (No. 1) ◽  
pp. 51-56 ◽  
Author(s):  
Chonghui Yue ◽  
Xiaodan Zang ◽  
Chao Chen ◽  
Liangwei Dong ◽  
Yanqiu Liu ◽  
...  

The crude polysaccharides from Armillaria mellea were obtained with an ultrasound assisted enzymatic extraction and ethanol precipitation. Two polysaccharide fractions were obtained by ethanol precipitation, which were named AMP-1 and AMP-2. The results of the monosaccharide composition analysis indicated that AMP-1 was composed of mannose, rhamnose, glucose, galactose, arabinose and fucose and that AMP-2 was composed of mannose, rhamnose, glucose, galactose and fucose. Glucose and galactose were the main monosaccharide fractions. The protein and nucleic acid contents in AMP-1 and AMP-2 were detected by using ultraviolet and infrared spectroscopy. The bile salt-binding capacities of the polysaccharide samples were studied in vitro. In comparison with lentinan (LP), AMP-1 and AMP-2 showed increased bile salt-binding capacity. AMP-1 showed the highest binding capacity against all the bile salts. The findings presented in this study highlight the potential of the A. mellea polysaccharides as a natural hypolipidaemic agent.


2012 ◽  
Vol 506 ◽  
pp. 274-277 ◽  
Author(s):  
K. Cheewatanakornkool ◽  
A. Chaidedgumjorn ◽  
U. Sotanaphun ◽  
S. Limsirichaikul ◽  
C. Wessapan ◽  
...  

Binding of bile salts by dietary fiber is believed to promote their excretion and hence to reduce the serum cholesterol level in man and experimental animals. In this study, the binding efficiency of soluble pectin from various sources, i.e., apple, citrus and pomelo, was examined. Sodium deoxycholate and sodium cholate hydrate were used as a model to represent bile salt in human body. The binding efficiency was assayed by acid reaction, thin layer chromatography (TLC) and enzyme cycling method. The results demonstrated that enzyme cycling method was the most suitable for assaying the in-vitro binding of bile salts while the TLC was not very sensitive, i.e., low amount of bile salts cannot be detected by TLC. Excess pectin from binding test could also interfere the acid reaction method even though the centrifugation was used to remove the excess pectin. When the concentration of pectin was increased, the binding efficiency with sodium deoxycholate increased. However, at 1% w/w of pectin, the binding efficiency decreased. The exception is for pomelo pectin in which the binding efficiency increased when the pectin concentration increased. With sodium cholate hydrate, only slight difference in binding efficiency was observed for all types and concentrations of pectin. The results indicate that the ability to bind bile salts of pectin might be responsible for its hypocholesterolemic action observed in experimental animals and humans.


2017 ◽  
Vol 35 (3) ◽  
pp. 217-223 ◽  
Author(s):  
Jung-Chin Chang ◽  
Ulrich Beuers ◽  
Ronald P.J. Oude Elferink

Background: Primary biliary cholangitis (PBC; previously referred to as primary biliary cirrhosis) is a chronic fibrosing cholangiopathy with the signature of an autoimmune disease and features of intrahepatic cholestasis. Immunosuppressing treatments are largely unsuccessful. Responsiveness to ursodeoxycholic acid and reduced expression of anion exchanger 2 (AE2) on canalicular membranes and small bile ducts underline the importance of bicarbonate transportation in its disease mechanism. Soluble adenylyl cyclase (sAC; ADCY10) is an evolutionarily conserved bicarbonate sensor that regulates apoptosis, barrier function and TNF signaling. Key Messages: The biliary epithelium defends against the toxic bile by bicarbonate secretion and by maintaining a tight barrier. Passive diffusion of weak acid conjugates (e.g. bile salts and other toxins) across plasma membrane is pH-dependent. Reduced AE2 expression results in both reduced bicarbonate secretion and accumulation of bicarbonate in the cells. Increased intracellular bicarbonate leads to increased sAC activity, which regulates bile salt-induced apoptosis. Reduced bicarbonate secretion causes more bile salts to enter cells, which further increase sAC activity by releasing intracellular Ca2+ store. In vitro studies demonstrate that inhibition of sAC not only corrects sensitization to bile salt-induced apoptosis as a result of AE2 down-regulation but also prevents bile salt-induced apoptosis altogether. Targeting sAC is also likely to slow down disease progression by strengthening the barrier function of biliary epithelia and by reducing oxidative stress as a result of chronic inflammation. Conclusions: sAC is a potential therapeutic target for PBC. More in vitro and in vivo studies are needed to understand how sAC regulates bile salt-induced apoptosis and to establish its therapeutic value in PBC and other cholestatic cholangiopathies.


1976 ◽  
Vol 153 (3) ◽  
pp. 519-531 ◽  
Author(s):  
M C Carey ◽  
P C Hirom ◽  
D M Small

Since chlorpromazine hydrochloride [2-chloro-10-(3-dimethylaminopropyl)-phenothiazine hydrochloride] is commonly implicated in causing bile-secretory failure in man and is secreted into bile, we have studied the physicochemical interactions of the drug with the major components of bile in vitro. Chlorpromazine hydrochloride molecules are amphiphilic by virtue of possessing a polar tertiary amine group linked by a short paraffin chain to a tricyclic hydrophobic part. At pH values below the apparent pK (pK'a 7.4) the molecules are water-soluble cationic detergents. We show that bile salts in concentrations above their critical micellar concentrations are precipitated from solution by chlorpromazine hydrochloride as insoluble 1:1 salt complexes. In the case of mixed bile-salt/phosphatidylcholine micellar solutions, however, the degree of precipitation is inhibited by the phospholipid in proportion to its mole fraction. With increases in the concentration of chlorpromazine hydrochloride or bile salt, micellar solubilization of the precipitated complexes results. Sonicated dispersions of the negatively charged phospholipid phosphatidylserine were also precipitated, but dispersions of the zwitterionic phospholipid phosphatidylcholine were not. Chlorpromazine hydrochloride efficiently solubilized these membrane phospholipids as mixed micellar solutions when the drug:phospholipid molar ratio reached 4:1. Polarizing-microscopy and X-ray-diffraction studies revealed that the precipitated complexes were amorphous and potentiometric studies confirmed the presence of a salt bond. Some dissociation of the complex occurred in the case of the most polar bile salt (Ks 0.365). As canalicular bile-salt secretion determines much of bile-water flow, we propose that complexing and precipitation of bile salts by chlorpromazine hydrochloride and its metabolites may be physicochemically related to the reversible bile-secretory failure produced by this drug.


It has been recognised for many years that blood serum has an inhibitory effect on the hæmolysis produced by many substances, notably saponin and bile salts. Ransom (1), in 1901, observing that cholesterol inhibits the action of saponin, attributed the inhibitory effect of serum to the contained cholesterol. The quantities of cholesterol used in his experiments are far greater than those which occur in serum, and the experiments are inconclusive for that reason. Bayer (2), in 1907, investigated the inhibitory effect produced by serum on the action of the bile salts. He found that cholesterol has no inhibitory effect, that lecithin produces inhibition, but not in the quantities that occur in blood, and that the proteins of the serum are responsible for the inhibition. He calls attention to the results of von Eisler (3), who states that serum globulin inhibits the action of staphalolysin and of tetanolysin, and also those of von Liebermann, who finds that hæmolysis by soaps is prevented by serum albumin (4). Bayer’s researches are, in the main, confirmed by Sellards (5). The investigations of Ludke (6) and of Scandaliato (7), who found that the inhibitory effect of serum is slightly increased after the injection of bile salts, may be mentioned. The conclusions of these authors are unreliable, since inadequate methods of measuring the amount of inhibition were used. References to various points in connection with the inhibition produced by serum in vivo and in vitro are to be found in the writer’s earlier papers (8, 9, 10). The Nature of the Inhibitory Substances . Before proceeding to the quantitative estimations, it is necessary to know which constituents of serum are responsible for the inhibition of saponin and bile salt hæmolysis respectively. Bayer’s results might be taken as conclusive were it not for two considerations: (1) Bayer filtered most of the solutions of bile salts, and lecithin-bile-salt mixtures, whose hæmolytic power he wished to determine, through a Berkefeld filter, and thereafter tested their hæmolytic activity. He states that this procedure has no effect on the time taken for these solutions to produce hæmolysis. This is a fallacy, for a solution of sodium taurocholate will not pass through a filter paper without losing some of its hæmolytic activity, while passage through a Berkefeld filter causes a very marked change indeed (10). It is therefore not permissible to regard the hæmolytic activity of a solution filtered in this way as identical with, or even corresponding to, the activity of an unfiltered solution; (2) Bayer used very rough quantitative methods—he refers to “slight hæmolysis,” “considerable hæmolysis,” etc., and, accordingly, would be able to detect only very marked degrees of inhibition. The same remark applies to the experiments of Sellards.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 281 ◽  
Author(s):  
Simon Hohenester ◽  
Veronika Kanitz ◽  
Andreas E. Kremer ◽  
Coen C. Paulusma ◽  
Ralf Wimmer ◽  
...  

Hydrophobic bile salts are considered to promote liver fibrosis in cholestasis. However, evidence for this widely accepted hypothesis remains scarce. In established animal models of cholestasis, e.g., by Mdr2 knockout, cholestasis and fibrosis are both secondary to biliary damage. Therefore, to test the specific contribution of accumulating bile salts to liver fibrosis in cholestatic disease, we applied the unique model of inducible hepatocellular cholestasis in cholate-fed Atp8b1G308V/G308V mice. Glycochenodeoxycholate (GCDCA) was supplemented to humanize the murine bile salt pool, as confirmed by HPLC. Biomarkers of cholestasis and liver fibrosis were quantified. Hepatic stellate cells (HSC) isolated from wild-type mice were stimulated with bile salts. Proliferation, cell accumulation, and collagen deposition of HSC were determined. In cholestatic Atp8b1G308V/G308V mice, increased hepatic expression of αSMA and collagen1a mRNA and excess hepatic collagen deposition indicated development of liver fibrosis only upon GCDCA supplementation. In vitro, numbers of myofibroblasts and deposition of collagen were increased after incubation with hydrophobic but not hydrophilic bile salts, and associated with EGFR and MEK1/2 activation. We concluded that chronic hepatocellular cholestasis alone, independently of biliary damage, induces liver fibrosis in mice in presence of the human bile salt GCDCA. Bile salts may have direct pro-fibrotic effects on HSC, putatively involving EGFR and MEK1/2 signaling.


HPB Surgery ◽  
1988 ◽  
Vol 1 (1) ◽  
pp. 21-27 ◽  
Author(s):  
J. A. Pain ◽  
M. E. Bailey

Systemic endotoxaemia is associated with postoperative renal dysfunction in obstructive jaundice, and can be prevented by the pre-operative administration of certain bile salts. In order to find the most effective bile salt for use in this condition, a comparison of the anti-endotoxic activities of different bile salts was performed. Bile salts were incubated in vitro with endotoxin and the resultant endotoxin level was measured with a quantitative limulus assay. The in vivo effects of different oral bile salts on the intestinal absorption of radiolabelled endotoxin from rats with obstructive jaundice were compared. The in vitro and in vivo anti-endotoxic activities of bile salts related to their known detergent activities. Deoxycholic acid and its conjugates were the most effective and should be the bile salts of choice for further clinical evaluation in obstructive jaundice in man.


1999 ◽  
Vol 62 (12) ◽  
pp. 1461-1465 ◽  
Author(s):  
ABDELHAMID KERKADI ◽  
CLAUDE BARRIAULT ◽  
RONALD R. MARQUARDT ◽  
ANDRZEJ A. FROHLICH ◽  
IBRAHIM M. YOUSEF ◽  
...  

We have shown that the addition of cholestyramine (CHA, a resin known to bind bile salts in the gastrointestinal tract) to ochratoxin A (OTA)-contaminated rat diets reduced plasma levels of the toxin and prevented OTA-induced nephrotoxicity. To elucidate the mechanism of action of CHA, we carried out in vitro experiments to determine whether the resin may bind the toxin. For comparative purposes, binding of bile salts to the resin was also examined. Results showed that CHA binds both OTA and bile salts (taurodeoxycholate [TDC] and taurocholate [TCA]). Also, CHA showed greater affinity for OTA and TDC than for TCA. At 1 mM concentration, 96% of OTA and 80% of TDC were bound to the resin, while for TCA binding was only 50%. However, saturation of the resin was reached at higher levels with bile acids compared to OTA (3.67 mmol/g resin for TCA and 3.71 mmol/g resin for TDC versus 2.85 mmol/g resin for OTA). To characterize the nature of the binding of the toxin to CHA, NaCl (0 to 200 mM) was added to a fixed amount of OTA or bile acids. As expected, TCA absorption was decreased by the addition of NaCl (<50 mM), indicating electrostatic binding. However, OTA and TDC sorption was decreased only at high concentrations of NaCl (>150 mM), suggesting a stronger binding to the resin than that shown with TCA. Sequential competitive studies demonstrated that CHA binds more OTA than TCA. The results of the in vivo study show the role of bile salts in OTA absorption. The toxin's plasma levels at 1 and 3 h after a single oral dose of OTA were significantly decreased in bile salt–depleted rats compared to the control. Thus, the alteration of the bile salt biliary pool and OTA enterohepatic circulation may be an additional mechanism of action of the resin against mycotoxin toxicity.


Sign in / Sign up

Export Citation Format

Share Document