scholarly journals Prenatal and Postpartum Maternal Iodide Intake from Diet and Supplements, Urinary Iodine and Thyroid Hormone Concentrations in a Region of the United Kingdom with Mild-to-Moderate Iodine Deficiency

Nutrients ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 230
Author(s):  
Diane E. Threapleton ◽  
Dagmar Waiblinger ◽  
Charles J.P. Snart ◽  
Elizabeth Taylor ◽  
Claire Keeble ◽  
...  

Iodine is essential for normal thyroid function, supporting healthy fetal and child development. Iodine requirements increase in pregnancy, but many women in regions without salt iodization have insufficient intakes. We explored associations between iodide intake and urinary iodine concentration (UIC), urinary iodine/creatinine ratio (I/Cr), thyroid stimulating hormone, thyroglobulin, free triiodothyronine, free thyroxine and palpable goiter in a region of mild-to-moderate iodine insufficiency. A total of 246 pregnant women aged 18–40 in Bradford, UK, joined the Health and Iodine in Babies (Hiba) study. They provided detailed information on diet and supplement use, urine and serum samples and were assessed for goiter at around 12, 26 and 36 weeks’ gestation, and 6, 18 and 30 weeks postpartum. Dietary iodide intake from food and drink was estimated using six 24 h recalls. During pregnancy, median (IQR) dietary iodide intake was 101 µg/day (54, 142), with 42% from dairy and 9% from white fish. Including supplements, intake was 143 µg/day (94, 196), with 49% < UK reference nutrient intake (140 µg/day). Women with Pakistani heritage had 129 µg/day (87, 190) median total intake. Total intake during pregnancy was associated with 4% (95% CI: 1%, 7%) higher UIC, 5% (3%, 7%) higher I/Cr, 4% (2%, 6%) lower thyroglobulin and 21% (9%, 32%) lower odds of palpable goiter per 50 µg/day. This cohort consumed less iodide in pregnancy than UK and World Health Organization dietary recommendations. UIC, I/Cr and thyroglobulin were associated with intake. Higher intake was associated with fewer goiters. Because dairy was the dominant source of iodide, women following plant-based or low-dairy diets may be at particular risk of iodine insufficiency.

Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3483
Author(s):  
Inger Aakre ◽  
Lidunn Tveito Evensen ◽  
Marian Kjellevold ◽  
Lisbeth Dahl ◽  
Sigrun Henjum ◽  
...  

Seaweeds, or macroalgae, may be a good dietary iodine source but also a source of excessive iodine intake. The main aim in this study was to describe the iodine status and thyroid function in a group of macroalgae consumers. Two urine samples were collected from each participant (n = 44) to measure urinary iodine concentration (UIC) after habitual consumption of seaweed. Serum thyroid stimulating hormone (TSH), free thyroxine (fT4), free triiodothyronine (fT3), and peroxidase autoantibody (TPOAb), were measured in a subgroup (n = 19). A food frequency questionnaire and an iodine-specific 24 h recall were used to assess iodine intake and macroalgae consumption. The median (p25–p75) UIC was 1200 (370–2850) μg/L. Median (p25–p75) estimated dietary iodine intake, excluding macroalgae, was 110 (78–680) μg/day, indicating that seaweed was the major contributor to the iodine intake. TSH levels were within the reference values, but higher than in other comparable population groups. One third of the participants used seaweeds daily, and sugar kelp, winged kelp, dulse and laver were the most common species. Labelling of iodine content was lacking for a large share of the products consumed. This study found excessive iodine status in macroalgae consumers after intake of dietary seaweeds. Including macroalgae in the diet may give excessive iodine exposure, and consumers should be made aware of the risk associated with inclusion of macroalgae in their diet.


2007 ◽  
Vol 10 (12A) ◽  
pp. 1602-1605 ◽  
Author(s):  
Rajata Rajatanavin

AbstractObjective: To present data on the relationship between the concentration of thyroid-stimulating hormone (TSH) in whole blood or serum from neonates and the concentration of iodine in their mother's urine collected at birth to contribute to the contention that the recommended iodine intake during pregnancy should be increased.Design and Setting: Data were provided by current programmes of neonatal screening of congenital hypothyroidism in Bangkok and rural areas of Thailand.Subjects: A total of 5144 cord serum samples were collected in 2003 and measured for TSH concentrations. Paired samples of blood and urine were collected in 2000 from 203 infants and their mothers and from 1182 infant-mother pairs in 2002-03 in six rural provinces. Iodine was measured in the urine and TSH was measured in cord serum.Results: The urinary iodine concentration of mothers in rural Thailand is adequate, with a median of 103 μg l-1. However, in 2000, the median urinary iodine concentration of mothers in Bangkok was only 85 μg l-1. The concentration of TSH in whole blood collected on filter paper from neonates was not sensitive enough to be used as a monitoring tool for iodine nutrition in the neonates, as there was no relationship with the concentration of iodine in the urine of the children's mothers. This was in contrast to the concentration of TSH in serum collected from cord blood.Conclusions: Several conclusions were drawn from this data: 1) Neonatal TSH screening using whole blood collected from a heel prick at 3 days of age is not sensitive enough to assess the iodine nutrition of neonates; 2) Neonatal TSH screening using cord sera can be used to assess iodine nutrition in neonates; 3) The optimum median maternal urinary iodine concentration in Thailand appears to be 103 μg l-1; 4) The criteria proposed by WHO, UNICEF, and ICCIDD to assess iodine nutrition using data on neonatal TSH concentrations should be reassessed; and 5) Neonatal TSH screening can be effectively performed by collecting cord serum in district hospitals in Thailand.


2020 ◽  
Author(s):  
Saroj Kunwar ◽  
Saroj Khatiwada ◽  
Basanta Gelal ◽  
Saroj Thapa ◽  
Gaurishankar Shah ◽  
...  

Abstract Objective: Both iodine deficiency and excess can negatively impact thyroid function. The present study was conducted to assess iodine nutrition among children and thyroid function in iodine deficient children. Results: A total of 1012 school aged children (6-14 years) from several schools of Udayapur district were enrolled initially for the assessment of urinary iodine concentration (UIC). Blood samples (n=83) were collected from a subgroup of children who had UIC<100 µg/L to measure serum thyroglobulin (Tg), thyroid stimulating hormone (TSH), free triiodothyronine (fT3) and free thyroxine (fT4). Serum UIC was measured by ammonium persulfate digestion method and Tg, TSH, fT4 and fT3 were measured by ELISA kits from Diametra Company. The prevalence of insufficient UIC (UIC<100 µg/L) was 11.1% in school children’s of Udayapur district. The median UIC was 236 µg/L. The mean fT3, fT4 and TSH among children with insufficient UIC were 2.55±0.43 pg/mL, 0.96±0.28 ng/dL and 3.60±1.44 mIU/L respectively. The Median Tg was 17.5 ng/mL. Overt hypothyroidism and subclinical hypothyroidism was seen in 6% and 3.6% cases with UIC<100 µg/L respectively.


Author(s):  
Katarzyna Gajewska ◽  
Marzena Laskowska ◽  
Anna Blazewicz

Abstract Preeclampsia (PE) is one of the leading causes of perinatal and maternal morbidity. Although subclinical hypothyroidism in pregnancy is one of the established risk factors for PE, the link between iodine deficiency and PE is not fully understood. The aim of our study was to assess urinary iodine concentration (UIC), serum thyroid-stimulating hormone (TSH), free triiodothyronine (fT3), and free thyroxine (fT4) levels in Polish women with PE (PE group, n=78) compared with healthy non-pregnant women (CNP group, n=30), and healthy pregnant women (CP group, n=46). The UIC was determined by inductively coupled plasma mass spectrometry (ICP-MS). Both the mean UIC of 144.6±36.4 μg/L in the CP group and the mean of 125.8±33.6 μg/L in the PE group, respectively, were lower compared to non-pregnant women (149.8±28.8 μg/L), and the difference between the PE and CNP groups was statistically significant. TSH values were the highest in the PE group, while the lowest average level was for the CNP group. The fT3 and fT4 values in the PE group were significantly lower compared to the CNP and CP groups. Despite iodine supplementation during pregnancy, the UIC was lower compared to non-pregnant women, while in women with PE it was at a significantly lower level. To reduce the incidence of possible health complications, proper iodine supplementation and monitoring of the UIC is recommended for pregnant women suffering from PE or at risk of developing PE.


Author(s):  
Michela Bottani ◽  
Aasne K. Aarsand ◽  
Giuseppe Banfi ◽  
Massimo Locatelli ◽  
Abdurrahman Coşkun ◽  
...  

Abstract Objectives Thyroid biomarkers are fundamental for the diagnosis of thyroid disorders and for the monitoring and treatment of patients with these diseases. The knowledge of biological variation (BV) is important to define analytical performance specifications (APS) and reference change values (RCV). The aim of this study was to deliver BV estimates for thyroid stimulating hormone (TSH), free thyroxine (FT4), free triiodothyronine (FT3), thyroglobulin (TG), and calcitonin (CT). Methods Analyses were performed on serum samples obtained from the European Biological Variation Study population (91 healthy individuals from six European laboratories; 21–69 years) on the Roche Cobas e801 at the San Raffaele Hospital (Milan, Italy). All samples from each individual were evaluated in duplicate within a single run. The BV estimates with 95% CIs were obtained by CV-ANOVA, after analysis of variance homogeneity and outliers. Results The within-subject (CV I ) BV estimates were for TSH 17.7%, FT3 5.0%, FT4 4.8%, TG 10.3, and CT 13.0%, all significantly lower than those reported in the literature. No significant differences were observed for BV estimates between men and women. Conclusions The availability of updated, in the case of CT not previously published, BV estimates for thyroid markers based on the large scale EuBIVAS study allows for refined APS and associated RCV applicable in the diagnosis and management of thyroid and related diseases.


Author(s):  
Jane S. Whitbread ◽  
Karen J. Murphy ◽  
Peter M. Clifton ◽  
Jennifer B. Keogh

Women consuming a strictly vegan/plant-based diet may be at increased risk of low iodine intake due to avoidance of animal products containing iodine. The aim of this pilot study was to determine the iodine excretion and intake in women consuming vegan/plant based diets compared with women consuming omnivore diets. Fifty-seven women (n = 31 plant-based, n = 26 omnivores), provided two spot urine samples to assess urinary iodine concentration (UIC). Two days of dietary intake were also recorded by participants. As the data were not normally distributed results are reported as median (IQR). UIC was significantly different between groups, 44 (26–66) µg/L in the vegan/plant-based group versus 64 (40–88) µg/L in omnivores (p < 0.05). UIC did not meet the >100 µg/L level recommended by the World Health Organization. Iodine intake was also significantly different, 78 (62–91) µg/day in the vegan/plant-based group and 125 (86–175) µg/day in the omnivores (p = 0.000). Iodine intake and bread intake were correlated with iodine excretion (CC 0.410–4.11, p = 0.003). These data indicate iodine insufficiency in both groups of women as the median values were below the minimum WHO recommendation. A larger study assessing iodine excretion in the Australian women of reproductive age who are not pregnant or breastfeeding is needed to confirm these findings.


2017 ◽  
Vol 39 (1) ◽  
pp. 75-85 ◽  
Author(s):  
Fan-Fen Wang ◽  
Kam-Tsun Tang ◽  
Wen-Harn Pan ◽  
Justin Ging-Shing Won ◽  
Yao-Te Hsieh ◽  
...  

Background: In 2003, Taiwan’s iodine policy changed from mandatory to voluntary. The Nutrition and Health Survey in Taiwan (NAHSIT) 2001-2002 for schoolchildren showed adequate iodine nutrition, while NAHSIT 2005-2008 for adults showed the iodine status was at borderline adequacy. Objective: To investigate the iodine status of the Taiwanese population from schoolchildren to adulthood 10 years after the change of the salt iodization policy. Method: Urinary iodine was measured in samples from subjects in NAHSIT 2013. Results: The median urinary iodine concentration (UIC) of the Taiwanese population aged 6 years and above in 2013 was 96 μg/L, indicating mild iodine deficiency. The median UIC of 6- to 12-year-old schoolchildren was 124 μg/L (interquartile range [IQR]: 92-213 μg/L), and 115 μg/L (IQR: 80-166 μg/L), 125 μg/L (IQR: 74-161 μg/L), 73 μg/L (IQR: 52-131 μg/L), and 78 μg/L (IQR: 52-132 μg/L) in populations aged 13 to 18 years, 19 to 44 years, 45 to 64 years, and ≥65 years, respectively. Declining iodine nutrition in age groups ≥45 years old was noted that the median UIC of populations aged 45 to 64 years and ≥65 years was 99 and 88 μg/L, respectively, in NAHSIT 2005-2008. The median UIC of schoolchildren was not lower than that during the mandatory salt fortification period, but the distribution of urinary iodine levels signified a dietary pattern change. Conclusion: Wide-ranging variation in iodine nutrition levels was observed in different age groups. Universal salt iodization, as suggested by the World Health Organization, should be the best strategy to achieve adequate iodine nutrition.


2014 ◽  
Vol 111 (9) ◽  
pp. 1622-1631 ◽  
Author(s):  
Sarah C. Bath ◽  
Alan Walter ◽  
Andrew Taylor ◽  
John Wright ◽  
Margaret P. Rayman

Iodine is a key component of the thyroid hormones which are crucial for brain development. Adequate intake of iodine in pregnancy is important as in utero deficiency may have lifelong consequences for the offspring. Data on the iodine status of UK pregnant women are sparse, and there are no such data for pregnant women in the South East of the UK. A total of 100 pregnant women were recruited to a cross-sectional study carried out at the Royal Surrey County Hospital, Guildford, at their first-trimester visit for an ultrasound scan. The participants provided a spot-urine sample (for the measurement of urinary iodine concentration (UIC) and creatinine concentration) and 24 h iodine excretion was estimated from the urinary iodine:creatinine ratio. Women completed a general questionnaire and a FFQ. The median UIC (85·3 μg/l) indicated that the group was iodine deficient by World Health Organisation criteria. The median values of the iodine:creatinine ratio (122·9 μg/g) and of the estimated 24 h iodine excretion (151·2 μg/d) were also suggestive of iodine deficiency. UIC was significantly higher in women taking an iodine-containing prenatal supplement (n 42) than in those not taking such a supplement (P< 0·001). In the adjusted analyses, milk intake, maternal age and iodine-containing prenatal supplement use were positively associated with the estimated 24 h urinary iodine excretion. Our finding of iodine deficiency in these women gives cause for concern. We suggest that women of childbearing age and pregnant women should be given advice on how to improve their iodine status through dietary means. A national survey of iodine status in UK pregnant women is required.


Nutrients ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2757 ◽  
Author(s):  
Kim ◽  
Kwon ◽  
Kim ◽  
Hong ◽  
Park

This study aimed to observe the relationship between iodine nutrition status (dietary iodine intake and estimated iodine intake based on urinary iodine concentration (UIC)) and thyroid disease-related hormones. This study involved 6090 subjects >19 years old with valid UIC, assessed between 2013 and 2015 by the Korean National Health and Nutrition Examination Survey, using a stratified, multistage, clustered probability-sampling design. The estimated iodine intake in participants was measured using UIC and urine creatinine. To examine the effect of iodine intake on thyroid disease, the iodine intake was divided into Korean Dietary Reference Intakes groups, and logistic regression analysis was performed via the surveylogistic procedure to obtain odds ratios (ORs) and 95% confidence intervals (CIs). The estimated iodine intake showed a significant positive correlation with dietary iodine intake (r = 0.021, p < 0.001), UIC (r = 0.918, p < 0.001), and thyroid-stimulating hormone (TSH) (r = 0.043, p < 0.001), but a significant negative correlation with free thyroxine (FT4) (r = −0.037, p < 0.001). Additionally, as the estimated iodine intake increased, age, TSH, and UIC increased, but FT4 decreased (p for trend < 0.0001). The risk of thyroid disease was higher in the “≥tolerable upper intake level (UL ≥ 2400 µg/day)” group than in the “<estimated average requirement (EAR < 150 µg/day)” group in females (OR: 2.418; 95% CI: 1.010–5.787). Also, as iodine intake increased, the risk of thyroid disease increased (p for trend < 0.038).


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Tafere Gebreegziabher ◽  
Barbara Stoecker

Abstract Objectives The objective of this study was to assess the effects of two sources of iodine supplementation on maternal and infant thyroid function and on visual information processing (VIP) of infants in southern Ethiopia Methods A community-based, randomized, supplementation trial was conducted. Mother infant dyads (n = 106) were recruited within the first week after delivery to participate in this study. Mothers were randomly assigned either to receive a potassium iodide capsule (225 µg iodine) daily for 26 weeks or appropriately iodized salt weekly for 26 weeks for household consumption. Maternal thyroxine (T4), triiodothyronine (T3), thyroid stimulating hormone (TSH), thyroglobulin (Tg), urinary iodine concentration (UIC), breast milk iodine concentration (BMIC) and infant T4, TSH, UIC and VIP were measured as outcome variables. Results At baseline, neither mothers nor infants in the two groups (capsule and iodized salt groups) were significantly different in any of the biomarkers and anthropometry measurements. Maternal TSH and goiter rate significantly decreased following iodine supplementation but T3, T4 and Tg didn't change. Maternal UIC and BMIC and infant UIC were not different among groups. Conclusions A maternal dose of 225 µg iodine daily or adequately iodized salt initiated within a week after delivery decreased goiter and TSH but did not impact infant T4, TSH or VIP. The two treatment groups didn't differ in any of the outcome variables. Funding Sources The study was funded by Nestlé Foundation and Oklahoma State University.


Sign in / Sign up

Export Citation Format

Share Document