scholarly journals Heart Rate Variability and Long Chain n-3 Polyunsaturated Fatty Acids in Chronic Kidney Disease Patients on Haemodialysis: A Cross-Sectional Pilot Study

Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2453
Author(s):  
Ana M Pinto ◽  
Helen L MacLaughlin ◽  
Wendy L Hall

Low heart rate variability (HRV) is independently associated with increased risk of sudden cardiac death (SCD) and all cardiac death in haemodialysis patients. Long chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) may exert anti-arrhythmic effects. This study aimed to investigate relationships between dialysis, sleep and 24 h HRV and LC n-3 PUFA status in patients who have recently commenced haemodialysis. A cross-sectional study was conducted in adults aged 40–80 with chronic kidney disease (CKD) stage 5 (n = 45, mean age 58, SD 9, 20 females and 25 males, 39% with type 2 diabetes). Pre-dialysis blood samples were taken to measure erythrocyte and plasma fatty acid composition (wt % fatty acids). Mean erythrocyte omega-3 index was not associated with HRV following adjustment for age, BMI and use of β-blocker medication. Higher ratios of erythrocyte eicosapentaenoic acid (EPA) to docosahexaenoic acid (DHA) were associated with lower 24 h vagally-mediated beat-to-beat HRV parameters. Higher plasma EPA and docosapentaenoic acid (DPAn-3) were also associated with lower sleep-time and 24 h beat-to-beat variability. In contrast, higher plasma EPA was significantly related to higher overall and longer phase components of 24 h HRV. Further investigation is required to investigate whether patients commencing haemodialysis may have compromised conversion of EPA to DHA, which may impair vagally-mediated regulation of cardiac autonomic function, increasing risk of SCD.

2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Ana Pinto ◽  
Helen MacLaughlin ◽  
Robert Gray ◽  
Wendy Hall

AbstractThe risk of sudden cardiac death (SCD) is doubled when a patient with chronic kidney disease (CKD) stage 5 starts haemodialysis. Low heart rate variability (HRV) has been reported to be independently associated with increased risk of SCD and all cardiac death in haemodialysis patients. Long chain n-3 polyunsaturated fatty acids (LC n-3 PUFA; 20:5n-3, EPA and 22:6n-3, DHA) may exert anti-arrhythmic effects on cardiac myocytes. Haemodialysis patients have lower serum LC n-3 PUFA levels compared to populations without CKD. Few studies have investigated the relationship between LC n-3 PUFA and HRV in patients with CKD. This study aimed to characterise the variability of LC n-3 PUFA status in patients who recently commenced haemodialysis, and to investigate relationships between LC n-3 PUFA status and HRV. A cross-sectional study was conducted in adults aged 40–80 years with CKD commencing haemodialysis (within 6–10 weeks) (NRES research ethics committee ref: 14/LO/0186). At 2 separate study days, pre-dialysis blood samples were taken to measure fatty acid composition by GC, and HRV monitors (Actiheart, CamNtech Ltd, UK) were fitted after dialysis had started to monitor parameters of cardiac autonomic function during dialysis, during the night, and for a total of 24 h. Forty-five patients (mean age 58 y, SD 9, 20 females/25 males) completed data collection at least once; 91% presented hypertension and 39% had type 2 diabetes. Sample mean omega-3 index (O3I; EPA + DHA as a % of fatty acids in erythrocyte membranes) was very low (3.45%, SD 1.25; median 3.26 %, IQR 1.32); only 2 individuals had O3I > 5%. Variability in erythrocyte EPA (median 0.66 %, IQR 0.42) and DHA (median 2.40 %, IQR 1.32) was limited. Most HRV parameters did not significantly correlate with O3I following adjustment (e.g. age, BMI, β-blockers). Plasma EPA significantly positively correlated with overall and longer phase components of HRV and significantly negatively correlated with beat-to-beat variability over 24 h after full adjustment for confounders. This suggests that although higher circulating EPA concentrations were associated with better cardiac responsivity to environmental stimulations over 24 h, they were also associated with poorer parasympathetic tone (the predominant influence on beat-to-beat HRV). No correlations were observed between plasma DHA and HRV. The divergent pattern of relationships between plasma EPA versus DHA and HRV raises the theory that patients commencing haemodialysis may have compromised conversion of EPA to DHA which may impair vagally-mediated regulation of cardiac autonomic function, a potential mechanism for high risk of SCD.


Nutrients ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1313 ◽  
Author(s):  
Jesper Rantanen ◽  
Sam Riahi ◽  
Martin Johansen ◽  
Erik Schmidt ◽  
Jeppe Christensen

Marine n-3 polyunsaturated fatty acids (PUFA) may improve autonomic dysfunction, as indicated by an increase in heart rate variability (HRV) and reduce the risk of sudden cardiac death. Hence, the aim of this study was to investigate the effects of marine n-3 PUFA on 24-h HRV in patients on chronic dialysis, who have a high risk of sudden cardiac death. Between June 2014 and March 2016, 112 patients on chronic dialysis from Denmark were allocated to a daily supplement of 2 g marine n-3 PUFA or control for three months in a randomized, double-blinded, controlled trial. A 48-h Holter monitoring was performed and mean 24-h HRV indices for the two days were available in 85 patients. The mean age was 62.3 years (SD: 14.3) and median dialysis vintage was 1.7 years (IQR: 0.5, 6.4). Within-group and between-group changes in outcome were evaluated by a paired and two sample t-test, respectively. Marine n-3 PUFA did not change the primary endpoint SDNN (SD of all RR-intervals) reflecting overall HRV, but other HRV indices increased and the mean RR-interval increased significantly, corresponding to a decrease in heart rate by 2.5 beats per minute (p = 0.04). In conclusion, marine n-3 PUFA did not change SDNN, but the mean heart rate was significantly reduced and changes in other HRV-indices were also observed, indicating an increase in vagal modulation that might be protective against malignant ventricular arrhythmias.


Author(s):  
Naveen Reddy Avula ◽  
Tusahr Dighe ◽  
Atul Sajgure ◽  
Charan Bale ◽  
Pavan Wakhare

Background: Chronic kidney disease is prevalent disease even in absence of diabetes and hypertension in 12% adults over 65 yrs of age. Autonomic imbalance is not studied in detail which could be a risk factor for chronic kidney disease.Methods: This Study was observational study in a tertiary care Hospital in pune, india and was conducted for a period of 1 year with sample size of 52. All subjects were known cases of chronic kidney disease from stage III to VD. All individuals of age >18yrs and eGFR ≤60ml/min/1.73m2 according to CKD- EPI equation were included in the study and who were not giving consent were excluded. 24 hrs Holter monitoring was done in stages from ckd stages III to V, for ckd stage VD on both Hemodialysis day and Non hemodialysis. Analysis was done using SPSS version 20 (IBM SPSS Statistics Inc., Chicago, Illinois, USA) Windows software program. The paired t test, analysis of variance (ANOVA) and Chi-square test were used. Level of significance was set at p≤0.05.Results: In this study when Heart rate variability (HRV) parameters were compared in different stages of ckd from stage III to VD (on Hemodialysis day) SDNN, SDNN Index were found to be statistically significant and on non Hemodialysis day SDNN Index was found to be statistically significant. In each subgroup of ckd stage V when diabetic subjects were compared with non-diabetic subjects, HRV parameters like ratio of P/S which was found to be low and significant in ckd stage V diabetic subjects.Conclusions: Chronic kidney disease itself can affect the HRV parameters. Causal relationship between HRV and chronic kidney diseases can be vice versa and further needs larger and prospective studies.


Medicina ◽  
2020 ◽  
Vol 57 (1) ◽  
pp. 15
Author(s):  
Altynay Balmukhanova ◽  
Kairat Kabulbayev ◽  
Harika Alpay ◽  
Assiya Kanatbayeva ◽  
Aigul Balmukhanova

Background and objectives: Chronic kidney disease (CKD) in children is a complex medical and social issue around the world. One of the serious complications is mineral-bone disorder (CKD-MBD) which might determine the prognosis of patients and their quality of life. Fibroblast growth factor 23 (FGF-23) is a phosphaturic hormone which is involved in the pathogenesis of CKD-MBD. The purpose of the study was to determine what comes first in children with CKD: FGF-23 or phosphate. Materials and Methods: This cross-sectional study included 73 children aged 2–18 years with CKD stages 1–5. We measured FGF-23 and other bone markers in blood samples and studied their associations. Results: Early elevations of FGF-23 were identified in children with CKD stage 2 compared with stage 1 (1.6 (1.5–1.8) pmol/L versus 0.65 (0.22–1.08), p = 0.029). There were significant differences between the advanced stages of the disease. FGF-23 correlated with PTH (r = 0.807, p = 0.000) and phosphate (r = 0.473, p = 0.000). Our study revealed that the elevated level of FGF-23 went ahead hyperphosphatemia and elevated PTH. Thus, more than 50% of children with CKD stage 2 had the elevating level of serum FGF-23, and that index became increasing with the disease progression and it achieved 100% at the dialysis stage. The serum phosphate increased more slowly and only 70.6% of children with CKD stage 5 had the increased values. The PTH increase was more dynamic. Conclusions: FGF-23 is an essential biomarker, elevates long before other markers of bone metabolism (phosphate), and might represent a clinical course of disease.


Sign in / Sign up

Export Citation Format

Share Document