scholarly journals Vitamin B6 in Health and Disease

Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3229
Author(s):  
Kamilla Stach ◽  
Wojciech Stach ◽  
Katarzyna Augoff

Vitamin B6 is a fascinating molecule involved in the vast majority of changes in the human body because it is a coenzyme involved in over 150 biochemical reactions. It is active in the metabolism of carbohydrates, lipids, amino acids, and nucleic acids, and participates in cellular signaling. It is an antioxidant and a compound with the ability to lower the advanced glycation end products (AGE) level. In this review, we briefly summarize its involvement in biochemical pathways and consider whether its deficiency may be associated with various diseases such as diabetes, heart disease, cancer, or the prognosis of COVID-19.

Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3467
Author(s):  
Melpomeni Peppa ◽  
Ioanna Mavroeidi

The increased incidence of obesity, diabetes mellitus, aging, and associated comorbidities indicates the interplay between genetic and environmental influences. Several dietary components have been identified to play a role in the pathogenesis of the so-called “modern diseases”, and their complications including advanced glycation end products (AGEs), which are generated during the food preparation and processing. Diet-derived advanced glycation end products (dAGEs) can be absorbed in the gastrointestinal system and contribute to the total body AGEs’ homeostasis, partially excreted in the urine, while a significant amount accumulates to various tissues. Various in vitro, in vivo, and clinical studies support that dAGEs play an important role in health and disease, in a similar way to those endogenously formed. Animal studies using wild type, as well as experimental, animal models have shown that dAGEs contribute significantly to the pathogenesis of various diseases and their complications, and are involved in the changes related to the aging process. In addition, they support that dAGEs’ restriction reduces insulin resistance, oxidative stress, and inflammation; restores immune alterations; and prevents or delays the progression of aging, obesity, diabetes mellitus, and their complications. These data can be extrapolated in humans and strongly support that dAGEs’ restriction should be considered as an alternative therapeutic intervention.


Author(s):  
Juliana Christyaningsih ◽  
Taufiqurrahman Taufiqurrahman ◽  
Sujono Sujono

Objectives: Glucose and amino acids or fat in diabetic patients if were oxidized to form a compound amadori product (hemoglobin A1c [HbA1c]) and intermediate dicarbonyl that uses reactive carbonyl groups to bind with the amino acids to form advanced glycation end products (AGEs). Soybean is classified as a low index glycemic and content of polyphenol compounds are reported to have various biological activities, which are beneficial to health. Project objectives: The aim of this study was to determine the effect of extract soybean of local varieties obtained on AGEs and HbA1c.Methods: This study was a randomized pretest-posttest control group design. The amount of 28 Mus musculus Balb/C was divided into seven groups. The control group was divided four, while the test group was given extracts of three varieties of soybean, that is, Gema, Wilis, and Argomulyo at a dose equivalent to 1 g of soy/kg BW/day for 25 days. Type 2 diabetes (T2D) mice made with the administration of STZ at a dose of 55 mg/kg in mice.Results: There is a sign of differences in HbA1c levels in the group of mice, and there are different levels of AGEs, though not statistically significant in the group of mice.Conclusions: The extract soybean was a positive effect on the levels of AGEs and HbA1c in T2D mice.


Amino Acids ◽  
2021 ◽  
Author(s):  
Svetlana Baskal ◽  
Petra Büttner ◽  
Sarah Werner ◽  
Christian Besler ◽  
Philipp Lurz ◽  
...  

AbstractHeart failure with preserved ejection fraction (HFpEF) is associated with high mortality and has an increasing prevalence associated with the demographic change and limited therapeutic options. Underlying mechanisms are largely elusive and need to be explored to identify specific biomarkers and new targets, which mirror disease progression and intervention success. Obese ZSF1 (O-ZSF1) rats are a useful animal model, as they spontaneously develop hypertension, hyperlipidemia and glucose intolerance and finally HFpEF. The urinary profile of amino acids and their metabolites of post-translational modifications (PTM), including the advanced glycation end-products (AGEs) of lysine, arginine and cysteine, are poorly investigated in HFpEF and ZSF1 rats. The aim of the present study was to characterize the status of free amino acids and their metabolites of PTM and glycation in lean ZSF1 (L-ZSF1) and O-ZSF1 rats in urine aiming to find possible effects of glucose on the excretion of native and modified amino acids. In the urine of twelve L-ZSF1 and twelve O-ZFS1 rats collected at the age of 20 weeks, we measured the concentration of native and modified amino acids by reliable previously validated stable-isotope dilution gas chromatography-mass spectrometry (GC–MS) approaches. Serum glucose was 1.39-fold higher in the O-ZSF1 rats, while urinary creatinine concentration was 2.5-fold lower in the O-ZSF1 rats. We observed many differences in urinary amino acids excretion between L-ZSF1 and O-ZSF1 rats. The creatinine-corrected homoarginine excretion was twofold lower in the O-ZSF1 rats. We also observed distinct associations between the concentrations of serum glucose and urinary amino acids including their PTM and AGE metabolites in the L-ZSF1 and O-ZSF1 rats. Our study shows that PTM metabolites and AGEs are consistently lower in the L-ZSF1 than in the O-ZSF1 rats. Serum malondialdehyde (MDA) concentration was higher in the O-ZSF1 rats. These results suggest that hyperglycemia, hyperlipidemia and elevated oxidative stress in the O-ZSF1 rats favor PTM methylation of arginine and lysine and the glycation of lysine and cysteine. The area under the receiver operation characteristic (ROC) curve values were 0.996 for serum glucose, 0.951 for urinary creatinine, 0.939 for serum MDA, 0.885 for Nε-carboxyethyl-lysine, 0.830 for carboxyethyl-cysteine, and 0.792 for monomethyl-lysine. Non-invasive measurement of methylation and glycation products of arginine, lysine and cysteine residues in proteins in urine of L-ZSF1 and O-ZSF1 rats may be useful in studying pathophysiology and pharmacology of HFpEF.


Sign in / Sign up

Export Citation Format

Share Document