scholarly journals Blueberry Counteracts Prediabetes in a Hypercaloric Diet-Induced Rat Model and Rescues Hepatic Mitochondrial Bioenergetics

Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4192
Author(s):  
Sara Nunes ◽  
Sofia D. Viana ◽  
Inês Preguiça ◽  
André Alves ◽  
Rosa Fernandes ◽  
...  

The paramount importance of a healthy diet in the prevention of type 2 diabetes is now well recognized. Blueberries (BBs) have been described as attractive functional fruits for this purpose. This study aimed to elucidate the cellular and molecular mechanisms pertaining to the protective impact of blueberry juice (BJ) on prediabetes. Using a hypercaloric diet-induced prediabetic rat model, we evaluated the effects of BJ on glucose, insulin, and lipid profiles; gut microbiota composition; intestinal barrier integrity; and metabolic endotoxemia, as well as on hepatic metabolic surrogates, including several related to mitochondria bioenergetics. BJ supplementation for 14 weeks counteracted diet-evoked metabolic deregulation, improving glucose tolerance, insulin sensitivity, and hypertriglyceridemia, along with systemic and hepatic antioxidant properties, without a significant impact on the gut microbiota composition and related mechanisms. In addition, BJ treatment effectively alleviated hepatic steatosis and mitochondrial dysfunction observed in the prediabetic animals, as suggested by the amelioration of bioenergetics parameters and key targets of inflammation, insulin signaling, ketogenesis, and fatty acids oxidation. In conclusion, the beneficial metabolic impact of BJ in prediabetes may be mainly explained by the rescue of hepatic mitochondrial bioenergetics. These findings pave the way to support the use of BJ in prediabetes to prevent diabetes and its complications.

Nutrients ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1954
Author(s):  
John-Peter Ganda Mall ◽  
Frida Fart ◽  
Julia A. Sabet ◽  
Carl Mårten Lindqvist ◽  
Ragnhild Nestestog ◽  
...  

The effect of dietary fibres on intestinal barrier function has not been well studied, especially in the elderly. We aimed to investigate the potential of the dietary fibres oat β-glucan and wheat arabinoxylan to strengthen the intestinal barrier function and counteract acute non-steroid anti-inflammatory drug (indomethacin)-induced hyperpermeability in the elderly. A general population of elderly subjects (≥65 years, n = 49) was randomised to a daily supplementation (12g/day) of oat β-glucan, arabinoxylan or placebo (maltodextrin) for six weeks. The primary outcome was change in acute indomethacin-induced intestinal permeability from baseline, assessed by an in vivo multi-sugar permeability test. Secondary outcomes were changes from baseline in: gut microbiota composition, systemic inflammatory status and self-reported health. Despite a majority of the study population (85%) showing a habitual fibre intake below the recommendation, no significant effects on acute indomethacin-induced intestinal hyperpermeability in vivo or gut microbiota composition were observed after six weeks intervention with either dietary fibre, compared to placebo.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
M.L Nieto Callejo ◽  
I Gallardo ◽  
B Gutierrez ◽  
M.I Cabero ◽  
L Ruiz ◽  
...  

Abstract Background Autoimmune myocarditis is a cause of dilated cardiomyopathy and heart failure. Recent studies have indicated that leaky gut may allow environmental factors to enter the body and trigger the initiation/development of autoimmune disease. Moreover, there is a growing literature supporting that, beside myocardial fibrosis, a leaky intestinal barrier and gut dysbiosis are pathogenic factors linked to heart failure. The natural triterpene oleanolic acid (OA) has been shown to beneficially influence the severity of the experimental autoimmune myocarditis (EAM), a preclinical model of human myocarditis, via anti-oxidant and immunomodulatory mechanisms. Herein, we investigate gastrointestinal (GI) disturbances and the gut microbiota composition associated with EAM as potential therapeutic target of OA. Methods and results BALB/c mice were α-myosin-inmunized to induce EAM and treated with OA (25 mg/kg/day, i.p). On day 21, heart fibrosis and parameters related to gut damage such as oxidative stress (O2- ions, lipid peroxidation), gut permeability (D-lactate; I-FABP), inflammation and mucins were determined in serum and/or colon. Fecal microbial profiles were identified by 16S rRNA gene sequencing analysis. Firstly, histological analysis of hearts showed presence of fibrosis (Sirius Red stain) in EAM mice, whereas these effects were not detectable in myocardium from healthy or OA-treated EAM mice. In addition, OA preserved the mucin-containing goblet cells along the colon (Alcian Blue/PAS stain). Consistently, serum levels of the epithelial gut damage markers, including D-lactate and iFABP were significantly reduced in OA treated-EAM mice. The beneficial OA effects also included a decrease in the pro-inflammatory mediators sPLA2-IIA and IL-1β and a protection from the oxidative stress response (DHE stain and TBARS) in serum and colonic tissue of EAM-mice. Furthermore, gut microbiota composition showed a lower bacterial diversity and different relative abundance of certain bacterial taxa in EAM-mice compared to control mice. The families of Muribaculaceae, Lachnospiraceae, and Ruminococcaceae were significantly affected in EAM mice, and only Muribaculaceae recovered levels similar to the healthy-control group, after treatment with OA. Conclusion Our data show that in addition to the heart, the intestinal barrier and gut microbiota are altered in myocarditis, and that OA treatment could ameliorate this profile. Our data contribute to the idea that gut dysbiosis and GI dysfunction influences myocarditis pathogenesis, and provides new findings regarding the beneficial activity of OA in EAM, suggesting that it may be an interesting candidate to be explored for the treatment of human patients. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): MINECO, ISCIII, CIBERCV-ISCIII


Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1832 ◽  
Author(s):  
Giacomo Caio ◽  
Lisa Lungaro ◽  
Nicola Segata ◽  
Matteo Guarino ◽  
Giorgio Zoli ◽  
...  

Celiac disease (CD) and non-celiac gluten/wheat sensitivity (NCG/WS) are the two most frequent conditions belonging to gluten-related disorders (GRDs). Both these diseases are triggered and worsened by gluten proteins ingestion, although other components, such as amylase/trypsin inhibitors (ATI) and fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAPs), seem to be involved in the NCG/WS onset. Therefore, the only effective treatment to date is the long-life adherence to a strictly gluten-free diet. Recently, increasing attention has been paid to the intestinal barrier, a dynamic system comprising various components, which regulate the delicate crosstalk between metabolic, motor, neuroendocrine and immunological functions. Among the elements characterizing the intestinal barrier, the microbiota plays a key role, modulating the gut integrity maintenance, the immune response and the inflammation process, linked to the CD and NCG/WS outbreak. This narrative review addresses the most recent findings on the gut microbiota modulation induced by the gluten-free diet (GFD) in healthy, CD and NCG/WS patients.


2020 ◽  
Vol 21 (23) ◽  
pp. 9254
Author(s):  
Bernadeta Pietrzak ◽  
Katarzyna Tomela ◽  
Agnieszka Olejnik-Schmidt ◽  
Andrzej Mackiewicz ◽  
Marcin Schmidt

Secretory IgA (SIgA) is the dominant antibody class in mucosal secretions. The majority of plasma cells producing IgA are located within mucosal membranes lining the intestines. SIgA protects against the adhesion of pathogens and their penetration into the intestinal barrier. Moreover, SIgA regulates gut microbiota composition and provides intestinal homeostasis. In this review, we present mechanisms of SIgA generation: T cell-dependent and -independent; in different non-organized and organized lymphoid structures in intestinal lamina propria (i.e., Peyer’s patches and isolated lymphoid follicles). We also summarize recent advances in understanding of SIgA functions in intestinal mucosal secretions with focus on its role in regulating gut microbiota composition and generation of tolerogenic responses toward its members.


2020 ◽  
Vol 11 (11) ◽  
pp. 9634-9650
Author(s):  
Jie Shen ◽  
Pei Li ◽  
Shuangshuang Liu ◽  
Qing Liu ◽  
Yue Li ◽  
...  

In the AOM-induced precancerous colorectal lesions rat model, HQT inhibits aberrant crypt foci formation mainly by modulating the gut microbiota composition and improving metabolomic disorders.


2018 ◽  
Vol 11 (1) ◽  
Author(s):  
Morten Kobaek-Larsen ◽  
Dennis Sandris Nielsen ◽  
Witold Kot ◽  
Łukasz Krych ◽  
Lars Porskjær Christensen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document