scholarly journals Effects of Dietary Fibres on Acute Indomethacin-Induced Intestinal Hyperpermeability in the Elderly: A Randomised Placebo Controlled Parallel Clinical Trial

Nutrients ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1954
Author(s):  
John-Peter Ganda Mall ◽  
Frida Fart ◽  
Julia A. Sabet ◽  
Carl Mårten Lindqvist ◽  
Ragnhild Nestestog ◽  
...  

The effect of dietary fibres on intestinal barrier function has not been well studied, especially in the elderly. We aimed to investigate the potential of the dietary fibres oat β-glucan and wheat arabinoxylan to strengthen the intestinal barrier function and counteract acute non-steroid anti-inflammatory drug (indomethacin)-induced hyperpermeability in the elderly. A general population of elderly subjects (≥65 years, n = 49) was randomised to a daily supplementation (12g/day) of oat β-glucan, arabinoxylan or placebo (maltodextrin) for six weeks. The primary outcome was change in acute indomethacin-induced intestinal permeability from baseline, assessed by an in vivo multi-sugar permeability test. Secondary outcomes were changes from baseline in: gut microbiota composition, systemic inflammatory status and self-reported health. Despite a majority of the study population (85%) showing a habitual fibre intake below the recommendation, no significant effects on acute indomethacin-induced intestinal hyperpermeability in vivo or gut microbiota composition were observed after six weeks intervention with either dietary fibre, compared to placebo.

2021 ◽  
Vol 8 ◽  
Author(s):  
Li Gu ◽  
Feng Ren ◽  
Xianrui Fang ◽  
Lianwen Yuan ◽  
Ganglei Liu ◽  
...  

Background: Mesenchymal stem cell (MSC)-derived exosomes (Exos) are recently proved to be a promising candidate for ulcerative colitis (UC), but the mechanism remains unclear. We investigated the effects of MSC-derived exosomal microRNA-181a (miR-181a) on gut microbiota, immune responses, and intestinal barrier function in UC.Methods: Human bone marrow MSC-derived Exos were extracted and identified via transmission electron microscopy (TEM), Nanoparticle Tracking Analysis (NTA), and Western blotting. Dextran sodium sulfate (DSS)-induced colitis model and lipopolysaccharide (LPS)-induced human colonic epithelial cell (HCOEPIC) model were established to determine the effect of MSC-Exos on gut microbiota, immune responses, and intestinal barrier function in vivo and in vitro. The relationship between miR-181a and UC was analyzed using the Gene Expression Omnibus (GEO) database. MSC-miR-181-inhibitor was used to reveal the role of exosomal miR-181a in DSS-induced colitis.Results: TEM and NTA results showed that Exos of a diameter of about 100 nm with the round and oval vesicle-like structure were successfully extracted. The expressions of the CD63, CD81, and TSG101 proteins were positive in these Exos. After MSC-Exo treatment, the colon length in colitis mice increased; colon inflammatory injury decreased; TNF-α, IL-6, IL-1β, IL-17, and IL-18 levels decreased; and Claudin-1, ZO-1, and IκB levels increased. In addition, the structure of the gut microbiota in DSS-induced colitis mice was changed by MSC-Exos. MSC-Exos showed antiapoptotic effects on LPS-induced HCOEPIC. The protective effects decreased significantly by treatment with MSC-Exos interfered with miR-181a inhibitor in vivo and in vitro.Conclusion: MSC-derived exosomal miR-181a could alleviate experimental colitis by promoting intestinal barrier function. It exerted anti-inflammatory function and affected the gut microbiota. This indicated that MSC exosomal miR-181a may exhibit potential as a disease-modifying drug for UC.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 959 ◽  
Author(s):  
Jefferson Antônio Leite ◽  
Gabriela Pessenda ◽  
Isabel C. Guerra-Gomes ◽  
Alynne Karen Mendonça de Santana ◽  
Camila André Pereira ◽  
...  

Pattern recognition receptors (PRRs), such as Nod2, Nlrp3, Tlr2, Trl4, and Tlr9, are directly involved in type 1 diabetes (T1D) susceptibility. However, the role of the cytosolic DNA sensor, AIM2, in T1D pathogenesis is still unknown. Here, we demonstrate that C57BL/6 mice lacking AIM2 (AIM2−/−) are prone to streptozotocin (STZ)-induced T1D, compared to WT C57BL/6 mice. The AIM2−/− mice phenotype is associated with a greater proinflammatory response in pancreatic tissues, alterations in gut microbiota and bacterial translocation to pancreatic lymph nodes (PLNs). These alterations are related to an increased intestinal permeability mediated by tight-junction disruption. Notably, AIM2−/− mice treated with broad-spectrum antibiotics (ABX) are protected from STZ-induced T1D and display a lower pancreatic proinflammatory response. Mechanistically, the AIM2 inflammasome is activated in vivo, leading to an IL-18 release in the ileum at 15 days after an STZ injection. IL-18 favors RegIIIγ production, thus mitigating gut microbiota alterations and reinforcing the intestinal barrier function. Together, our findings show a regulatory role of AIM2, mediated by IL-18, in shaping gut microbiota and reducing bacterial translocation and proinflammatory response against insulin-producing β cells, which ultimately results in protection against T1D onset in an STZ-induced diabetes model.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria Fernanda Roca Rubio ◽  
Ulrika Eriksson ◽  
Robert J. Brummer ◽  
Julia König

AbstractThe intestinal barrier plays a crucial role in maintaining gut health, and an increased permeability has been linked to several intestinal and extra-intestinal disorders. There is an increasing demand for interventions aimed at strengthening this barrier and for in vivo challenge models to assess their efficiency. This study investigated the effect of sauna-induced dehydration on intestinal barrier function (clinicaltrials.gov: NCT03620825). Twenty healthy subjects underwent three conditions in random order: (1) Sauna dehydration (loss of 3% body weight), (2) non-steroidal anti-inflammatory drug (NSAID) intake, (3) negative control. Intestinal permeability was assessed by a multi-sugar urinary recovery test, while intestinal damage, bacterial translocation and cytokines were assessed by plasma markers. The sauna dehydration protocol resulted in an increase in gastroduodenal and small intestinal permeability. Presumably, this increase occurred without substantial damage to the enterocytes as plasma intestinal fatty acid-binding protein (I-FABP) and liver fatty acid-binding protein (L-FABP) were not affected. In addition, we observed significant increases in levels of lipopolysaccharide-binding protein (LBP), IL-6 and IL-8, while sCD14, IL-10, IFN-ɣ and TNF-α were not affected. These results suggest that sauna dehydration increased intestinal permeability and could be applied as a new physiological in vivo challenge model for intestinal barrier function.


Biomedicines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 67 ◽  
Author(s):  
Shara Francesca Rapa ◽  
Rosanna Di Paola ◽  
Marika Cordaro ◽  
Rosalba Siracusa ◽  
Ramona D’Amico ◽  
...  

Intestinal epithelial barrier impairment plays a key pathogenic role in inflammatory bowel diseases (IBDs). In particular, together with oxidative stress, intestinal epithelial barrier alteration is considered as upstream event in ulcerative colitis (UC). In order to identify new products of natural origin with a potential activity for UC treatment, this study evaluated the effects of plumericin, a spirolactone iridoid, present as one of the main bioactive components in the bark of Himatanthus sucuuba (Woodson). Plumericin was evaluated for its ability to improve barrier function and to reduce apoptotic parameters during inflammation, both in intestinal epithelial cells (IEC-6), and in an animal experimental model of 2, 4, 6-dinitrobenzene sulfonic acid (DNBS)-induced colitis. Our results indicated that plumericin increased the expression of adhesion molecules, enhanced IEC-6 cells actin cytoskeleton rearrangement, and promoted their motility. Moreover, plumericin reduced apoptotic parameters in IEC-6. These results were confirmed in vivo. Plumericin reduced the activity of myeloperoxidase, inhibited the expression of ICAM-1, P-selectin, and the formation of PAR, and reduced apoptosis parameters in mice colitis induced by DNBS. These results support a pharmacological potential of plumericin in the treatment of UC, due to its ability to improve the structural integrity of the intestinal epithelium and its barrier function.


2020 ◽  
Vol 11 (12) ◽  
pp. 10839-10851
Author(s):  
Zhi-jie Ma ◽  
Huan-jun Wang ◽  
Xiao-jing Ma ◽  
Yue Li ◽  
Hong-jun Yang ◽  
...  

Ginger extract showed beneficial effects on rats with antibiotic-associated diarrhea, and the underlying mechanism might be associated with the recovery of gut microbiota and intestinal barrier function.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yi-Ming Chen ◽  
I-Lin Wang ◽  
Xin-Yi Zhu ◽  
Wan-Chun Chiu ◽  
Yen-Shuo Chiu

In red clover (Trifolium pratense L.; RC) the main compound is isoflavones, which are selective estrogen receptor modulators for maintaining female health. Isoflavones exert antifatigue effects during exercise in high-temperature environments. This study aimed to investigate the effect of RC supplementation on gut microbiota composition to determine whether it improves intestinal barrier function and exercise performance. Female ICR mice were divided into four groups (n = 8 per group) and orally administered RC once daily for 6 weeks at 0 (vehicle), 308 (RC-1X), 615 (RC-2X), and 1,538 (RC-5X) mg/kg. RC supplementation decreased the fat mass and increased exhaustive swimming time, grip strength, and muscle glycogen in female mice. In the RC supplementation group, serum levels of lactate, ammonia, and creatine kinase decreased after swimming. The estradiol and progesterone levels were higher in the RC group than in the vehicle group. Regarding gut microbiota composition, the RC-2X group may increase intestinal health related to the microorganisms Pseudobutyrivibrio and Parabacteroide. Thus, the use of RC supplements as nutraceuticals could have positive effects on athletes' gut and overall health.


Sign in / Sign up

Export Citation Format

Share Document