scholarly journals The DsTau Experiment: A Study for Tau-Neutrino Production

Particles ◽  
2020 ◽  
Vol 3 (1) ◽  
pp. 164-168
Author(s):  
Mădălina Mihaela Miloi ◽  

For clarifying the validity of the Lepton Universality hypothesis, one of the fundamental statements of the Standard Model, the interaction cross section for all three flavors of leptons have to be known with high precision. In neutrino sector, for electron and muon neutrinos, the interaction cross section is known fairly well, but for tau neutrino only poor estimations exist. In particular, the most direct measurement by the DONuT experiment was performed with rather poor accuracy due to low statistics and an uncertainty of the tau neutrino flux. The DsTau experiment proposes to study tau-neutrino production process and thus to improve significantly the accuracy of calculations of tau neutrino flux for neutrino accelerator experiments. To study reactions providing most of tau neutrinos, the experiment uses a setup based on high resolution nuclear emulsions, capable to register short lived particle decays created in proton-nucleus interactions. The present report is an overview of the DsTau experiment together with some of the preliminary results from the pilot run.

2019 ◽  
Vol 64 (7) ◽  
pp. 577
Author(s):  
Yu. Gornushkin

In the DsTau experiment at the CERN SPS, an independent direct way to study the tau neutrino production in high energy proton-nucleous interactions was proposed. Since the main source of tau neutrinos is a decay of Ds mesons, the project aims at measuring the differential cross-section of this reaction. The experimental method is based on the use of high-resolution emulsion detectors for the efficient registration of events with short-lived particle decays. The motivation of the project, details of the experimental technique, and the first results of the analysis of the data collected during test runs, which prove the feasibility of the study are presented.


2004 ◽  
Vol 19 (13n16) ◽  
pp. 1171-1178 ◽  
Author(s):  
H. ATHAR

Neutrinos with energy greater than GeV are copiously produced in the p(A,p) interactions occurring in the earth atmosphere and in our galactic plane. A comparison of the tau and mu neutrino flux in the presence of neutrino oscillations from these two astrophysical sites is presented. It is pointed out that the galactic plane tau neutrino flux dominates over the downward going atmospheric tau neutrino flux at much lower energy value than that for the dominance of the mu neutrino flux from these two sites. Future prospects for possible observations of galactic tau neutrino flux are also briefly mentioned.


2004 ◽  
Vol 19 (13n16) ◽  
pp. 1125-1132
Author(s):  
GUEY-LIN LIN

In this talk, we elaborate the strategy for detecting the Earth-skimming tau neutrinos. We first show that there are non-negligible astrophysical tau neutrino fluxes due to neutrino flavor oscillations. We then illustrate the idea of detecting Earth-skimming tau neutrinos. In particular, we point out that the tau-lepton flux resulting from neutrino-nucleon scatterings inside the earth is controlled by the tau-lepton range. We demonstrate this observation by showing the tau-lepton flux induced by the GZK tau-neutrino flux. The question on the energy resolutions of tau neutrinos in this detection strategy is briefly discussed.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Kevin J. Kelly ◽  
Pedro A. N. Machado ◽  
Alberto Marchionni ◽  
Yuber F. Perez-Gonzalez

Abstract We propose the operation of LEvEL, the Low-Energy Neutrino Experiment at the LHC, a neutrino detector near the Large Hadron Collider Beam Dump. Such a detector is capable of exploring an intense, low-energy neutrino flux and can measure neutrino cross sections that have previously never been observed. These cross sections can inform other future neutrino experiments, such as those aiming to observe neutrinos from supernovae, allowing such measurements to accomplish their fundamental physics goals. We perform detailed simulations to determine neutrino production at the LHC beam dump, as well as neutron and muon backgrounds. Measurements at a few to ten percent precision of neutrino-argon charged current and neutrino-nucleus coherent scattering cross sections are attainable with 100 ton-year and 1 ton-year exposures at LEvEL, respectively, concurrent with the operation of the High Luminosity LHC. We also estimate signal and backgrounds for an experiment exploiting the forward direction of the LHC beam dump, which could measure neutrinos above 100 GeV.


2019 ◽  
Vol 206 ◽  
pp. 09009
Author(s):  
Ha Nguyen Thi Kim ◽  
Van Nguyen Thi Hong ◽  
Son Cao Van

Neutrinos are neutral leptons and there exist three types of neutrinos (electron neutrinos νe, muon neutrinos νµ and tau neutrinos ντ). These classifications are referred to as neutrinos’s “flavors”. Oscillations between the different flavors are known as neutrino oscillations, which occurs when neutrinos have mass and non-zero mixing. Neutrino mixing is governed by the PMNS mixing matrix. The PMNS mixing matrix is constructed as the product of three independent rotations. With that, we can describe the numerical parameters of the matrix in a graphical form called the unitary triangle, giving rise to CP violation. We can calculate the four parameters of the mixing matrix to draw the unitary triangle. The area of the triangle is a measure of the amount of CP violation.


Sign in / Sign up

Export Citation Format

Share Document