scholarly journals Development of Garments with Elastic Straps and Pressure Applicator (GESPA) and “GVcorrect” App to Follow the Changes in Lower-Extremity Alignment (Genu Valgum)—A Pilot Study

2021 ◽  
Vol 13 (3) ◽  
pp. 495-503
Author(s):  
Anna-Liisa Tamm ◽  
Ivi Vaher ◽  
Reet Linkberg ◽  
Teet Tilk ◽  
Jana Kritt ◽  
...  

Background: There are non-invasive methods of correcting genu valgum (GV), but to date, there is no method to evaluate mechanotherapeutic intervention that does not restrict child’s natural movements while the process is on-going so that timely decisions could be made on effectiveness of intervention. The aim of study was to develop and assess the comfortability of garments with elastic straps and pressure applicator (GESPA) and the reliability and user-friendliness of “GVcorrect” app, which aims to catch the elastic straps’ pressure level (mN). Methods: 6 children (5–7 y) with intermalleolar distance ≥5 cm wore GESPA daily for 3 months. Anthropometrical and goniometrical measurements were done according to standard technique; tone and biomechanical parameters of skeletal muscles determined with MyotonPRO; feedback about GESPA and “GVcorrect” collected via questionnaire. Results: Based on feedback from children and parents, new, more comfortable and user-friendly GESPA were designed; several updates were made to “GVcorrect” app; new goals were set for the next phase of the study. Conclusions: GESPA and the “GVcorrect” app serve their purpose, but there are still a number of important limitations that need to be removed before the product can be marketed. The study continues with product development until a medical device certificate is obtained.

2020 ◽  
pp. 49-52
Author(s):  
Trine Aabo Andersen

A new fast measuring method for process optimization of sucrose crystallization using image analysis based on high quality images and algorithms is introduced. With the mobile, non-invasive at-line system all steps of the sucrose crystallization can be measured to determine the crystal size distribution. The image analysis system is easy to operate and is as well an efficient laboratory solution with user-friendly and customized software. In comparison to sieve analysis, image analyses performed with the ParticleTech Solution have been proven to be reliable.


Author(s):  
Lion D. Comfort ◽  
Marian C. Neidert ◽  
Oliver Bozinov ◽  
Luca Regli ◽  
Martin N. Stienen

Abstract Background Complications after neurosurgical operations can have severe impact on patient well-being, which is poorly reflected by current grading systems. The objective of this work was to develop and conduct a feasibility study of a new smartphone application that allows for the longitudinal assessment of postoperative well-being and complications. Methods We developed a smartphone application “Post OP Tracker” according to requirements from clinical experience and tested it on simulated patients. Participants received regular notifications through the app, inquiring them about their well-being and complications that had to be answered according to their assigned scenarios. After a 12-week period, subjects answered a questionnaire about the app’s functionality, user-friendliness, and acceptability. Results A total of 13 participants (mean age 34.8, range 24–68 years, 4 (30.8%) female) volunteered in this feasibility study. Most of them had a professional background in either health care or software development. All participants downloaded, installed, and applied the app for an average of 12.9 weeks. On a scale of 1 (worst) to 4 (best), the app was rated on average 3.6 in overall satisfaction and 3.8 in acceptance. The design achieved a somewhat favorable score of 3.1. One participant (7.7%) reported major technical issues. The gathered patient data can be used to graphically display the simulated outcome and assess the impact of postoperative complications. Conclusions This study suggests the feasibility to longitudinally gather postoperative data on subjective well-being through a smartphone application. Among potential patients, our application indicated to be functional, user-friendly, and well accepted. Using this app-based approach, further studies will enable us to classify postoperative complications according to their impact on the patient’s well-being.


Technologies ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 16
Author(s):  
Luca Maule ◽  
Alessandro Luchetti ◽  
Matteo Zanetti ◽  
Paolo Tomasin ◽  
Marco Pertile ◽  
...  

Any severe motor disability is a condition that limits the ability to interact with the environment, even the domestic one, caused by the loss of control over one’s mobility. This work presents RoboEYE, a power wheelchair designed to allow users to move easily and autonomously within their homes. To achieve this goal, an innovative, cost-effective and user-friendly control system was designed, in which a non-invasive eye tracker, a monitor, and a 3D camera represent some of the core elements. RoboEYE integrates functionalities from the mobile robotics field into a standard power wheelchair, with the main advantage of providing the user with two driving options and comfortable navigation. The most intuitive and direct modality foresees the continuous control of frontal and angular wheelchair velocities by gazing at different areas of the monitor. The second, semi-autonomous modality allows navigation toward a selected point in the environment by just pointing and activating the wished destination while the system autonomously plans and follows the trajectory that brings the wheelchair to that point. The purpose of this work was to develop the control structure and driving interface designs of the aforementioned driving modalities taking into account also uncertainties in gaze detection and other sources of uncertainty related to the components to ensure user safety. Furthermore, the driving modalities, in particular the semi-autonomous one, were modeled and qualified through numerical simulations and experimental verification by testing volunteers, who are regular users of standard electric wheelchairs, to verify the efficiency, reliability and safety of the proposed system for domestic use. RoboEYE resulted suitable for environments with narrow passages wider than 1 m, which is comparable with a standard domestic door and due to its properties with large commercialization potential.


Molecules ◽  
2018 ◽  
Vol 23 (8) ◽  
pp. 1869 ◽  
Author(s):  
Stefano Dugheri ◽  
Alessandro Bonari ◽  
Matteo Gentili ◽  
Giovanni Cappelli ◽  
Ilenia Pompilio ◽  
...  

High-throughput screening of samples is the strategy of choice to detect occupational exposure biomarkers, yet it requires a user-friendly apparatus that gives relatively prompt results while ensuring high degrees of selectivity, precision, accuracy and automation, particularly in the preparation process. Miniaturization has attracted much attention in analytical chemistry and has driven solvent and sample savings as easier automation, the latter thanks to the introduction on the market of the three axis autosampler. In light of the above, this contribution describes a novel user-friendly solid-phase microextraction (SPME) off- and on-line platform coupled with gas chromatography and triple quadrupole-mass spectrometry to determine urinary metabolites of polycyclic aromatic hydrocarbons 1- and 2-hydroxy-naphthalene, 9-hydroxy-phenanthrene, 1-hydroxy-pyrene, 3- and 9-hydroxy-benzoantracene, and 3-hydroxy-benzo[a]pyrene. In this new procedure, chromatography’s sensitivity is combined with the user-friendliness of N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide on-fiber SPME derivatization using direct immersion sampling; moreover, specific isotope-labelled internal standards provide quantitative accuracy. The detection limits for the seven OH-PAHs ranged from 0.25 to 4.52 ng/L. Intra-(from 2.5 to 3.0%) and inter-session (from 2.4 to 3.9%) repeatability was also evaluated. This method serves to identify suitable risk-control strategies for occupational hygiene conservation programs.


2018 ◽  
Author(s):  
D. Kuhner ◽  
L.D.J. Fiederer ◽  
J. Aldinger ◽  
F. Burget ◽  
M. Völker ◽  
...  

AbstractAs autonomous service robots become more affordable and thus available for the general public, there is a growing need for user-friendly interfaces to control these systems. Control interfaces typically get more complicated with increasing complexity of the robotic tasks and the environment. Traditional control modalities as touch, speech or gesture commands are not necessarily suited for all users. While non-expert users can make the effort to familiarize themselves with a robotic system, paralyzed users may not be capable of controlling such systems even though they need robotic assistance most. In this paper, we present a novel framework, that allows these users to interact with a robotic service assistant in a closed-loop fashion, using only thoughts. The system is composed of several interacting components: non-invasive neuronal signal recording and co-adaptive deep learning which form the brain-computer interface (BCI), high-level task planning based on referring expressions, navigation and manipulation planning as well as environmental perception. We extensively evaluate the BCI in various tasks, determine the performance of the goal formulation user interface and investigate its intuitiveness in a user study. Furthermore, we demonstrate the applicability and robustness of the system in real world scenarios, considering fetch-and-carry tasks and tasks involving human-robot interaction. As our results show, the system is capable of adapting to frequent changes in the environment and reliably accomplishes given tasks within a reasonable amount of time. Combined with high-level planning using referring expressions and autonomous robotic systems, interesting new perspectives open up for non-invasive BCI-based human-robot interactions.


2002 ◽  
Vol 10 (1) ◽  
pp. 13-17 ◽  
Author(s):  
Sasa Ljubenkovic

BACKGROUND: During radiotherapy in most of the irradiated patients occur the symptoms of acute radiation enteritis, less frequently cystitis or proctitis. The aim of this work was to apply non invasive exclusion methods to reduce the small bowel volume within the pelvic high dose volume and indirectly to reduce the number and severity of acute radiation enteritis METHODS: A total number of 183 patients were enrolled in our prospective randomised investigation we performed at the Clinic of Oncology in Knez Selo during one year. Ninety patients from E-group were irradiated with the standard technique two opposite parallel fields on the Mevatron-7445 linear accelerator (SIEMENS) patient-table, while 93 from C-group were irradiated under special conditions on our unique patient-table (PT) manufactured at our special demands by the Jugorendgen Ei-Ni? factory Brachytherapy was administered with RALT technique in both groups with isotope machine BUCHLER. RESULTS: Individual application of exclusion techniques led to protection of over 50% of the small bowel (118-1065 cm3) in 30/43 (70%) patients, and even in 10/43 (23%) more than 90% of the small bowel was protected (118-835 cm3), which would otherwise be irradiated with conventional techniques. None of the patients from E-group (out of 90) had more than 8 stools a day (G3), while in C-group there were 20 such cases Seventy-seven percent of the patients from E-group had formed stool, while the percent in C-group was 29. In C-group 40% of the patients had so called "watery stools"; in E-group the percent was 4. Out of 53 patients from K-group with mobile small bowel, 21 (40%) had "watery diarrhoea". CONCLUSION: Measures to prevent radiation enteritis should be taken before (surgical) or during (non invasive) radiotherapy. At the Clinic of Oncology in Knez Selo, individual application of small bowel exclusion techniques using the unique patient-table (JUGORENDGEN Ei-Ni?) led to protection of the small bowel during radiotherapy of uterine malignancies, which was reflected in a significantly reduced number and severity of acute enteritis symptoms.


1996 ◽  
Author(s):  
Leonid V. Tanin ◽  
Sergei C. Dick ◽  
Serguei A. Alexandrov ◽  
Mikhail M. Loiko ◽  
A. A. Kumeisha ◽  
...  

Author(s):  
Federico Cabitza ◽  
Iade Gesso

In the last years, researchers are exploring the feasibility of visual language editors in domain-specific domains where their alleged user-friendliness can be exploited to involve end-users in configuring their artifacts. In this chapter, the authors present an experimental user study conducted to validate the hypothesis that adopting a visual language could help prospective end-users of an electronic medical record define their own document-related local rules. This study allows them to claim that their visual rule editor based on the OpenBlocks framework can be used with no particular training as proficiently as with specific training, and it was found user-friendly by the user panel involved. Although the conclusions of this study cannot be broadly generalized, the findings are a preliminary contribution to show the importance of visual languages in domain-specific rule definition by end-users with no particular IT skills, like medical doctors are supposed to represent.


Author(s):  
Adeyinka Tella ◽  
Oluwole Olumide Durodolu ◽  
Stephen Osahon Uwaifo

This study has examined the library and information science female undergraduates' preference for Facebook as an information-sharing tool. A survey approach was adopted using a questionnaire to collect data from 457 LIS female undergraduate students drawn from five library schools in Nigeria. The findings of the study have demonstrated that most significant factors that lead to the use of Facebook for information sharing among LIS female undergraduate students are user-friendly nature of the tool, personal gain, enjoyment, and self-efficacy while the least factors are social engagement and empathy. User-friendliness nature of Facebook has the highest correlation with the preference for Facebook as an information-sharing tool by female students followed by enjoyment while learning and empathy are the least correlated factors.


2019 ◽  
Vol 5 (Supplement_1) ◽  
Author(s):  
D Schmitz ◽  
S Nooij ◽  
T Janssens ◽  
J Cremer ◽  
H Vennema ◽  
...  

Abstract As research next-generation sequencing (NGS) metagenomic pipelines transition to clinical diagnostics, the user-base changes from bioinformaticians to biologists, medical doctors, and lab-technicians. Besides the obvious need for benchmarking and assessment of diagnostic outcomes of the pipelines and tools, other focus points remain: reproducibility, data immutability, user-friendliness, portability/scalability, privacy, and a clear audit trail. We have a research metagenomics pipeline that takes raw fastq files and produces annotated contigs, but it is too complicated for non-bioinformaticians. Here, we present preliminary findings in adapting this pipeline for clinical diagnostics. We used information available on relevant fora (www.bioinfo-core.org) and experiences and publications from colleague bioinformaticians in other institutes (COMPARE, UBC, and LUMC). From this information, a robust and user-friendly storage and analysis workflow was designed for non-bioinformaticians in a clinical setting. Via Conda [https://conda.io] and Docker containers [http://www.docker.com], we made our disparate pipeline processes self-contained and reproducible. Furthermore, we moved all pipeline settings into a separate JSON file. After every analysis, the pipeline settings and virtual-environment recipes will be archived (immutably) under a persistent unique identifier. This allows long-term precise reproducibility. Likewise, after every run the raw data and final products will be automatically archived, complying with data retention laws/guidelines. All the disparate processes in the pipeline are parallelized and automated via Snakemake1 (i.e. end-users need no coding skills). In addition, interactive web-reports such as MultiQC [http://multiqc.info] and Krona2 are generated automatically. By combining Snakemake, Conda, and containers, our pipeline is highly portable and easily scaled up for outbreak situations, or scaled down to reduce costs. Since patient privacy is a concern, our pipeline automatically removes human genetic data. Moreover, all source code will be stored on an internal Gitlab server, and, combined with the archived data, ensures a clear audit trail. Nevertheless, challenges remain: (1) reproducible reference databases, e.g. being able to revert to an older version to reproduce old analyses. (2) A user-friendly GUI. (3) Connecting the pipeline and NGS data to in-house LIMS. (4) Efficient long-term storage, e.g. lossless compression algorithms. Nevertheless, this work represents a step forward in making user-friendly clinical diagnostic workflows.


Sign in / Sign up

Export Citation Format

Share Document