scholarly journals Nanotechnology for the Treatment of Allergic Conjunctival Diseases

2020 ◽  
Vol 13 (11) ◽  
pp. 351
Author(s):  
Yu-Chi Liu ◽  
Molly Tzu-Yu Lin ◽  
Anthony Herr Cheun Ng ◽  
Tina T. Wong ◽  
Jodhbir S. Mehta

Allergic conjunctivitis is one of the most common external eye diseases and the prevalence has been increasing. The mainstay of treatment is topical eye drops. However, low bioavailability, low ocular drug penetration, transient resident time on the ocular surface due to tear turnover, frequent topical applications and dependence on patient compliance, are the main drawbacks associated with topical administration. Nanotechnology-based medicine has emerged to circumvent these limitations, by encapsulating the drugs and preventing them from degradation and therefore providing sustained and controlled release. Using a nanotechnology-based approach to load the drug is particularly useful for the delivery of hydrophobic drugs such as immunomodulatory agents, which are commonly used in allergic conjunctival diseases. In this review, different nanotechnology-based drug delivery systems, including nanoemulsions, liposomes, nanomicelles, nanosuspension, polymeric and lipid nanoparticles, and their potential ophthalmic applications, as well as advantages and disadvantages, are discussed. We also summarize the results of present studies on the loading of immunomodulators or nonsteroidal anti-inflammatory drugs to nano-scaled drug delivery systems. For future potential clinical use, research should focus on the optimization of drug delivery designs that provide adequate and effective doses with safe and satisfactory pharmacokinetic and pharmaco-toxic profiles.

2021 ◽  
Vol 11 (3-S) ◽  
pp. 98-103
Author(s):  
Pranal Chhetri ◽  
Prithviraj Chakraborty ◽  
Debasmita Das ◽  
Tamanna Afnan

Delivery of drug into the ocular region is hindered by the protective layers that encapsulate the eyes, it has always been a major problem to get an effective bioavailability of the active drug in the ocular region due to the low precorneal resident time of most of the ocular delivery systems specifically convention once such as ointment, solution and suspension, as a result, most of the delivery systems are not capable of effectively treating ocular diseases. Several works have and are being carried out to overcome this problem one of which is using in-situ forming polymeric systems. Ocular In-situ gelling systems are a novel class of ocular drug delivery systems that are initially in a solution form but instantaneously gets converted into a viscous gel upon introduction or installation in the ocular cavity from which the active drugs get released in a sustained manner. This sol-to-gel phase transition depends upon various factors like change in pH, ion presence and change in temperature. Gel formed after the transformation has preferred viscosity along with bio-adhesive property, which increases the gel’s resident time in the ocular area and also releases the drug in a prolonged and sustained manner unlike conventional eye drops and ointments. This review emphasizes various ocular in-situ systems namely, pH triggered, Ion activated, and Temperature triggered systems which have prolonged residence time in the cul-de-sac area of the eye, hence increasing the ocular bioavailability. Keywords: In-situ gel, Ocular Drug delivery, Ocular Bioavailability, Polymer


Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5577
Author(s):  
Iwona Rykowska ◽  
Iwona Nowak ◽  
Rafał Nowak

This review describes the role of contact lenses as an innovative drug delivery system in treating eye diseases. Current ophthalmic drug delivery systems are inadequate, particularly eye drops, which allow about 95% of the active substance to be lost through tear drainage. According to the literature, many interdisciplinary studies have been carried out on the ability of contact lenses to increase the penetration of topical therapeutic agents. Contact lenses limit drug loss by releasing the medicine into two layers of tears on either side of the contact lens, eventually extending the time of contact with the ocular surface. Thanks to weighted soft contact lenses, a continuous release of the drug over an extended period is possible. This article reviewed the various techniques to deliver medications through contact lenses, examining their advantages and disadvantages. In addition, the potential of drug delivery systems based on contact lenses has been extensively studied.


2013 ◽  
Vol 20 (14) ◽  
pp. 1847-1857 ◽  
Author(s):  
Carmelo Puglia ◽  
Giorgia Tirendi ◽  
Francesco Bonina

2017 ◽  
Vol 6 (7) ◽  
pp. 5426 ◽  
Author(s):  
Hiren J. Patel ◽  
Vaishnavi P. Parikh

The pharmaceutical industry has faced several marked challenges in order to bring new chemical entities (NCEs) into the market over the past few decades. Various novel drug delivery approaches have been used as a part of life cycle management from which Osmotic drug delivery systems look the most promising one. After discussing the history of osmotic pump development, this article looks at the principles, advantages and disadvantages of osmotic drug delivery systems. Then, the basic components of osmotic pump and factors affecting the design of oral osmotic drug delivery systems are discussed in detail. In the later part of the manuscript, various types of osmotic pumps available in the market and evaluation methods for osmotic drug delivery systems are discussed in detail.


Author(s):  
И.Ю. Малышев ◽  
Л.В. Кузнецова ◽  
О.П. Буданова

В обзоре представлены современные данные о механизмах диагностики, планирования и оценки успешности терапии различных заболеваний с помощью экзосом, об использовании их как нанопереносчиков (т.е. нановезикул для эффективной доставки молекул). За последние годы разработано большое количество разных, в основном синтетических, систем доставки лекарственных средств, недостатками этих систем является плохая биосовместимость и органическая неспособность к высокоточной доставке загруженных веществ. По сравнению с синтетическими системами доставки лекарственных средств, экзосомы - вследствие своего естественного происхождения - могут обладать большими преимуществами, такими, как лучшая биосовместимость и повышенная устойчивость к разрушительному воздействию иммунной системы. Описана технология производства наноструктур, разработка и производство с помощью бионанотехнологий так называемых «полностью синтетических экзосомоподобных нановезикул», преимущества и недостатки этих методов. This review presents current data on mechanisms for diagnosis, planning, and evaluation of success in the treatment of various diseases using exosomes as nanocarriers (i.e., nanovesicles for efficient delivery of molecules). In recent years, a large number of different, mainly synthetic drug delivery systems has been developed. Disadvantages of these systems are poor biocompatibility and organic inability to deliver high-precision loaded substances. Compared with synthetic drug delivery systems, exosomes due to their natural origin may provide great advantages, such as better biocompatibility and increased resistance to detrimental effects of the immune system. This review describes in detail a technology of nanostructure production, the development and production of so-called fully synthetic exosome-like nanovesicles using bionanotechnology, and advantages and disadvantages of these methods.


2020 ◽  
Vol 321 ◽  
pp. 1-22 ◽  
Author(s):  
Clotilde Jumelle ◽  
Shima Gholizadeh ◽  
Nasim Annabi ◽  
Reza Dana

Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 3 ◽  
Author(s):  
Fadwa Odeh ◽  
Hamdi Nsairat ◽  
Walhan Alshaer ◽  
Mohammad A. Ismail ◽  
Ezaldeen Esawi ◽  
...  

Soon after they were first described in 1990, aptamers were largely recognized as a new class of biological ligands that can rival antibodies in various analytical, diagnostic, and therapeutic applications. Aptamers are short single-stranded RNA or DNA oligonucleotides capable of folding into complex 3D structures, enabling them to bind to a large variety of targets ranging from small ions to an entire organism. Their high binding specificity and affinity make them comparable to antibodies, but they are superior regarding a longer shelf life, simple production and chemical modification, in addition to low toxicity and immunogenicity. In the past three decades, aptamers have been used in a plethora of therapeutics and drug delivery systems that involve innovative delivery mechanisms and carrying various types of drug cargos. However, the successful translation of aptamer research from bench to bedside has been challenged by several limitations that slow down the realization of promising aptamer applications as therapeutics at the clinical level. The main limitations include the susceptibility to degradation by nucleases, fast renal clearance, low thermal stability, and the limited functional group diversity. The solution to overcome such limitations lies in the chemistry of aptamers. The current review will focus on the recent arts of aptamer chemistry that have been evolved to refine the pharmacological properties of aptamers. Moreover, this review will analyze the advantages and disadvantages of such chemical modifications and how they impact the pharmacological properties of aptamers. Finally, this review will summarize the conjugation strategies of aptamers to nanocarriers for developing targeted drug delivery systems.


2018 ◽  
Vol 10 (2) ◽  
pp. 1 ◽  
Author(s):  
Revathy B. Menon ◽  
Lakshmi V. S. ◽  
Aiswarya M. U. ◽  
Keerthana Raju ◽  
Sreeja C. Nair

A novel drug delivery system is the one that ensures optimum dose at the right time, at the right location. Porphysomes are among those drug delivery systems. Porphysomes are a means of vesicular drug delivery systems. They are liposome-like structures composed completely of porphyrin lipid. The porphysomes encapsulates the active medicament in vesicular structure. They are having an aqueous core which can be loaded with the medicament. They have the capacity to destroy the disease tissues. They absorb the heat in the near infrared region and release this heat to destroy the diseased tissues. Porphysomes are having immense applications in the field of positron-electron therapy (PET), photoacoustic imaging, photothermal therapy etc. This review article discusses regarding the Porphysome-the drug delivery system, its advantages and disadvantages, composition, method of preparation, applications and various aspects related to the porphysomal drug delivery.


2016 ◽  
Vol 10 (1) ◽  
pp. 85-95
Author(s):  
Tesfaye Gabriel

Background: Acne vulgaris (commonly called acne) is the most prevalent skin complication of different causes with a higher prevalence in adolescents. Topical administration is used as first-choice therapy in mild acne, whereas for moderate and severe acne, systemic administration is required in addition to topical therapy. Mechanisms by which treatments act are: normalizing shedding into the pore to prevent obstruction, destruction of P.acnes, suppression of inflammation, and hormonal management. Objective: This review focuses on the novel drug delivery systems displaying a strong ground for topical treatment of acne in order to enhance the therapeutic performance of the topical antiacne agents with improved patience compliance and a concomitant reduction in the side effects. Method: This literature review was obtained from electronic search on Pubmed, Google Scholars, Researchgate, Scimago, CABI, DOAJ, CiteFactor, GLOBAL HEALTH, Universal Impact Factor, Hinari among many others and also search was conducted on individual journals and manuals. Conclusion: Amongst various novel drug delivery systems, vesicular carriers like liposomes and niosomes, micro sponges, microemulsions, solid lipid nanoparticles, hydrogels, emulsifier-free formulations, fullerenes and aerosol foams have been reported as novel topical administration of antiacne drugs. Liposomes have been extensively explored and their ability to optimize and improve topical therapy has been proved by several clinical trials. Microemulsions, microsponges, solid lipid nanoparticles and hydrogels also exhibit a tremendous potential for commercialization.


Sign in / Sign up

Export Citation Format

Share Document