scholarly journals Disposition of Cannabidiol Metabolites in Serum and Urine from Healthy Individuals Treated with Pharmaceutical Preparations of Medical Cannabis

2020 ◽  
Vol 13 (12) ◽  
pp. 459
Author(s):  
Ana Pilar Pérez-Acevedo ◽  
Francesco Paolo Busardò ◽  
Roberta Pacifici ◽  
Giulio Mannocchi ◽  
Massimo Gottardi ◽  
...  

The use of cannabis flowering tops with standardized amounts of active phytocannabinoids was recently authorized in several countries to treat several painful pathological conditions. The acute pharmacological effects and disposition of Δ-9-tetrahydrocannabinol (THC), cannabidiol (CBD), their acidic precursors and THC metabolites after oil and decoction administration have been already described. In this study, the disposition of CBD metabolites: 7-carboxy-cannabidiol (7-COOH-CBD), 7-hydroxycannabidiol (7-OH-CBD), 6-α-hydroxycannabidiol (6-α-OH-CBD), and 6-β-hydroxycannabidiol (6-β-OH-CBD) in the serum and urine of healthy volunteers was presented. Thirteen healthy volunteers were administered 100 mL of cannabis decoction in the first experimental session and, after 15 days of washout, 0.45 mL of oil. Serum and urine samples were collected at different time points, and the CBD metabolites were quantified by ultra-high-performance liquid chromatography–tandem mass spectrometry. The most abundant serum metabolite was 7-COOH-CBD, followed by 7-OH-CBD, 6-β-OH-CBD, and6-α-OH-CBD, after decoction and oil. Both 7-OH-CBD and the 6-α-OH-CBD showed similar pharmacokinetic properties following administration of both cannabis preparations, whereas 7-COOH and 6-α-OH-CBD displayed a significant higher bioavailability after decoction consumption. All CBD metabolites were similarly excreted after oil and decoction intake apart from 6-α-OH-CBD, which had a significantly lower excretion after oil administration. The pharmacokinetic characterization of CBD metabolites is crucial for clinical practice since the cannabis herbal preparations are increasingly used for several pathological conditions.

Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2716 ◽  
Author(s):  
Tun-Pin Hsueh ◽  
Tung-Hu Tsai

The herbal formula Yin-Chen-Hao-Tang has been reported to have anti-fibrosis properties. The aim of this study was to reveal the pharmacokinetic characteristics of bioactive compounds in this herbal formula. A new high-performance liquid chromatography-tandem mass spectrometry method was developed and validated for simultaneous determination of scoparone, geniposide and rhein in rat plasma. A pharmaceutical herbal powder was administered to rats at doses of 1 g/kg and 3 g/kg orally. The method showed excellent linearity (r2 > 0.999) and validation was successfully conducted for the pharmacokinetic study. The results show that the Cmax values and areas under the curve of scoparone, geniposide and rhein were higher and not proportional to the dose in rat plasma, while the Tmax and half-life values were consistent in the group that received 1 g/kg. The clearance of the higher dose (3 g/kg) did not decrease proportionally to that of the low dose. The results showed the nonlinear pharmacokinetic properties of scoparone, geniposide and rhein in Yin-Chen-Hao-Tang that suggested possible accumulation of bioactive compounds through oral administration. This pharmacokinetic study reveals that an increased dose of this herbal formula would largely increase the maximum concentration and bioavailability of scoparone, geniposide and rhein.


2019 ◽  
Vol 43 (7) ◽  
pp. 579-586 ◽  
Author(s):  
Xiaoli Wang ◽  
Tao Guo ◽  
Yunbo Wei ◽  
Guiju Xu ◽  
Na Li ◽  
...  

Abstract Quinolone antibiotic residues may pose potential threat to human health. A rapid and sensitive method was developed for the determination of quinolone residues in human serum and urine. After solid phase extraction (SPE) process, eight quinolone residues were analyzed by high-performance liquid chromatography/tandem mass spectrometry (HPLC-MS/MS) using ciprofloxacin-d8 as the internal standard. The relative standard deviation of intra-day and inter-day precision for the eight quinolones were less than 7.52% and the accuracies ranged from 95.8% to 103% in human serum, and from 94.1% to 104% in human urine. The extraction recoveries for the eight quinolones varied from 80.2% to 113% in human serum and 83.4% to 117% in human urine. The limit of detection for the eight quinolones was 0.50–1.00 ng/mL. Quinolone antibiotic residues in human serum and urine from 12 volunteers were successfully analyzed with the validated method. The SPE-HPLC-MS/MS method was useful for accurate determination of quinolone antibiotic residues in human body.


Sign in / Sign up

Export Citation Format

Share Document