scholarly journals Tioconazole and Chloroquine Act Synergistically to Combat Doxorubicin-Induced Toxicity via Inactivation of PI3K/AKT/mTOR Signaling Mediated ROS-Dependent Apoptosis and Autophagic Flux Inhibition in MCF-7 Breast Cancer Cells

2021 ◽  
Vol 14 (3) ◽  
pp. 254
Author(s):  
Afnan H. El-Gowily ◽  
Samah A. Loutfy ◽  
Ehab M. M. Ali ◽  
Tarek M. Mohamed ◽  
Mohammed A. Mansour

Cancer is a complex devastating disease with enormous treatment challenges, including chemo- and radiotherapeutic resistance. Combination therapy demonstrated a promising strategy to target hard-to-treat cancers and sensitize cancer cells to conventional anti-cancer drugs such as doxorubicin. This study aimed to establish molecular profiling and therapeutic efficacy assessment of chloroquine and/or tioconazole (TIC) combination with doxorubicin (DOX) as anew combination model in MCF-7 breast cancer. The drugs are tested against apoptotic/autophagic pathways and related redox status. Molecular docking revealed that chloroquine (CQ) and TIC could be potential PI3K and ATG4B pathway inhibitors. Combination therapy significantly inhibited cancer cell viability, PI3K/AkT/mTOR pathway, and tumor-supporting autophagic flux, however, induced apoptotic pathways and altered nuclear genotoxic feature. Our data revealed that the combination cocktail therapy markedly inhibited tumor proliferation marker (KI-67) and cell growth, along with the accumulation of autophagosomes and elevation of LC3-II and p62 levels indicated autophagic flux blockage and increased apoptosis. Additionally, CQ and/or TIC combination therapy with DOX exerts its activity on the redox balance of cancer cells mediated ROS-dependent apoptosis induction achieved by GPX3 suppression. Besides, Autophagy inhibition causes moderately upregulation in ATGs 5,7 redundant proteins strengthened combinations induced apoptosis, whereas inhibition of PI3K/AKT/mTOR pathway with Beclin-1 upregulation leading to cytodestructive autophagy with overcome drug resistance effectively in curing cancer. Notably, the tumor growth inhibition and various antioxidant effects were observed in vivo. These results suggest CQ and/or TIC combination with DOX could act as effective cocktail therapy targeting autophagy and PI3K/AKT/mTOR pathways in MCF-7 breast cancer cells and hence, sensitizes cancer cells to doxorubicin treatment and combat its toxicity.

2021 ◽  
pp. 096032712199945
Author(s):  
AT Aliyev ◽  
S Ozcan-Sezer ◽  
A Akdemir ◽  
H Gurer-Orhan

Apigenin, a flavonoid, is reported to act as an estrogen receptor (ER) agonist and inhibit aromatase enzyme. However, amentoflavone, a biflavonoid bearing two apigenin molecules, has not been evaluated for its endocrine modulatory effects. Besides, it is highly consumed by young people to build muscles, enhance mood and lose weight. In the present study, apigenin was used as a reference molecule and ER mediated as well as ER-independent estrogenic/antiestrogenic activity of amentoflavone was investigated. Antitumor activity of amentoflavone was also investigated in both ER positive (MCF-7 BUS) and triple-negative (MDA-MB-231) breast cancer cells and its cytotoxicity was evaluated in human breast epithelial cells (MCF-10A). Our data confirmed ER agonist, aromatase inhibitory and cytotoxic effects of apigenin in breast cancer cells, where no ER mediated estrogenic effect and physiologically irrelevant, slight, aromatase inhibition was found for amentoflavone. Although selective cytotoxicity of amentoflavone was found in MCF-7 BUS cells, it does not seem to be an alternative to the present cytotoxic drugs. Therefore, neither an adverse effect, mediated by an estrogenic/antiestrogenic effect of amentoflavone nor a therapeutical benefit would be expected from amentoflavone. Further studies could be performed to investigate its in vivo effects.


2004 ◽  
Vol 32 (3) ◽  
pp. 793-810 ◽  
Author(s):  
MA Greeve ◽  
RK Allan ◽  
JM Harvey ◽  
JM Bentel

Androgens inhibit the growth of breast cancer cells in vitro and in vivo by mechanisms that remain poorly defined. In this study, treatment of asynchronously growing MCF-7 breast cancer cells with the androgen, 5alpha-dihydrotestosterone (DHT), was shown to inhibit cell proliferation and induce moderate increases in the proportion of G1 phase cells. Consistent with targeting the G1-S phase transition, DHT pretreatment of MCF-7 cultures impeded the serum-induced progression of G1-arrested cells into S phase and reduced the kinase activities of cyclin-dependent kinase (Cdk)4 and Cdk2 to less than 50% of controls within 3 days. DHT treatment was associated with greater than twofold increases in the levels of the Cdk inhibitor, p27(Kip1), while p21(Cip1/Waf1) protein levels remained unchanged. During the first 24 h of DHT treatment, levels of Cdk4-associated p21(Cip1/Waf1) and p27(Kip1) were reduced coinciding with decreased levels of Cdk4-associated cyclin D3. In contrast, DHT treatment caused increased accumulation of Cdk2-associated p21(Cip1/Waf1), with no significant alterations in levels of p27(Kip1) bound to Cdk2 complexes. These findings suggest that DHT reverses the Cdk4-mediated titration of p21(Cip1/Waf1) and p27(Kip1) away from Cdk2 complexes, and that the increased association of p21(Cip1/Waf1) with Cdk2 complexes in part mediates the androgen-induced growth inhibition of breast cancer cells.


Endocrinology ◽  
2001 ◽  
Vol 142 (4) ◽  
pp. 1497-1505 ◽  
Author(s):  
Mattie R. James ◽  
Todd C. Skaar ◽  
Richard Y. Lee ◽  
Alexander MacPherson ◽  
James A. Zwiebel ◽  
...  

2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 10676-10676
Author(s):  
W. Han ◽  
Y. Zhao ◽  
Z. Wu ◽  
Y. Mu ◽  
L. Yu ◽  
...  

10676 Background: Aberrant ERα activity is linked to genesis and malignant progression of breast cancer through direct target gene activation or repression. A complex network of coregulatory proteins is largely believed to determine the transcriptional activity of ERα. LRP16 was identified previously to be an estrogen (E2) responsive gene, but its function involving in conferring estrogen signalling pathway is not clear. Methods: Endogenous LRP16 expression in MCF-7 cells was stably suppressed by retrovirus-mediated small interference RNA (siRNA). The effects of LRP16 expression on E2-stimulated growth and invasive ability of MCF-7 cells were determined in vitro and in vivo assays. The effects of LRP16 expression on ERα transactivation were determined by luciferase assays. The interaction of LRP16 and ERα was examined by GST pull-down and coimmunopricipitation (CoIP) assays. Northern blot and Western blot were used to detect the mRNA and protein levels of ER target genes in LRP16-inhibited MCF-7 cells. The LRP16 expression levels in primary breast cancer were detected by Northern blot. Results: Fristly, LRP16 expression was characterized to be dependent on estrogen activities. Then, LRP16 was identified to be an estrogen-independent ERα cofactor in ER-positive breast cancer cells and demonstrate that LRP16 is an essential coactivator to ERα-mediated transactivation in an estrogen-dependent manner. Suppression of LRP16 expression in ER-positive breast cancer cells specifically inhibits the transcription of ER upregulated genes, results in the increase of E-cadherin expression through ER mediation. In vitro and in vivo data demonstrate that suppression of LRP16 inhibits the ability of estrogen-stimulated proliferation and invasiveness of ER-positive breast cancer cells. The pathological and clinical characteristics of human breast cancer includining ER/PR-positiveness, tumor diameter and the involvement of axillary lymphoid nodes were tightly linked with the LRP16 gene expression level. Conclusions: These results establish a mechanistic link between estrogen receptor status, its coactivator LRP16, and progression of ER-positive breast cancers, and may provide a novel antiestrogenic target for the therapy of ER positive breast cancer. No significant financial relationships to disclose.


2009 ◽  
Vol 16 (4) ◽  
pp. 1185-1195 ◽  
Author(s):  
Céline Van Themsche ◽  
Sophie Parent ◽  
Valérie Leblanc ◽  
Caroline Descôteaux ◽  
Anne-Marie Simard ◽  
...  

We have previously reported the synthesis of VP-128, a new 17β-oestradiol (E2)-linked platinum(II) hybrid with high affinity for oestrogen receptor α (ERα). In the present study, we have investigated the anti-tumour activity of VP-128 towards breast cancer cells in vitro and in vivo. We used human ERα-positive (MCF-7) and -negative (MDA-MB-468) cells as a model for treatment with increasing doses of VP-128, cisplatin or E2 in vitro and for xenograft experiments in nude mice in vivo. Compared with cisplatin, VP-128 showed markedly improved in vitro and in vivo anti-tumour activity towards ERα-positive MCF-7 breast cancer cells, without increased systemic toxicity. In these caspase-3-deficient cells, treatment with VP-128 overcame weak cellular sensitivity to cisplatin in vitro and in vivo. In these cells, only the hybrid induced apoptosis in an ERα-dependent manner, inactivated both X-linked inhibitor of apoptosis protein and Akt, and induced selective nuclear accumulation of ERα and the expression of ER-regulated genes c-myc and tff1, which was blocked by ERα-specific antagonist ICI 282 780. In the case of ERα-negative MDA-MB-468 cells, VP-128, but not cisplatin, induced nuclear accumulation of apoptosis-inducing factor and inhibited c-myc expression. However, VP-128 did not show enhanced in vivo anti-tumour activity compared with cisplatin. These results reveal two different modes of action for VP-128 in ERα-positive and -negative breast cancer cells, and highlight the promising therapeutic value of this unique E2-platinum hybrid for selective targeting of hormone-dependent cancers.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Therina Du Toit ◽  
Amanda C Swart

Abstract The metabolism of 11β-hydroxyandrostenedione (11OHA4), a major adrenal C19 steroid, was first characterised in our in vitro prostate models showing that 11OHA4, catalysed by 11βHSDs, 17βHSDs and 5α-reductases, yields potent androgens, 11keto-testosterone (11KT) and 11keto-dihydrotestosterone (11KDHT) in the 11OHA4-pathway [1]. Findings have since led to the analysis of C11-oxy steroids in PCOS, CAH and 21OHD. However, the only circulating C11-oxy steroids included to date have been 11OHA4, 11keto-androstenedione (11KA4), 11β-hydroxytestosterone (11OHT) and 11KT, with 11KT reported as the only potent androgen produced from 11OHA4. We have identified higher levels of 11KDHT compared to 11KT in prostate cancer tissue and benign prostatic hyperplasia tissue and serum, with data suggesting impeded glucuronidation of the C11-oxy androgens [2,3]. The assessment of 11KDHT and the inactivation/conjugation of the C11-oxy steroids in clinical conditions is therefore crucial. We investigated the metabolism of testosterone, 11KT, 11OHT, dihydrotestosterone, 11KDHT and 11OHDHT in JEG-3 placenta choriocarcinoma, MCF-7 BUS and T-47D breast cancer cells, focusing on glucuronidation and sulfation. Steroids were assayed at 1 µM and metabolites were quantified using UPC2-MS/MS. Conjugated steroids were not detected in JEG-3 cells with DHT (0.6 µM remaining) metabolised to 5α-androstane-3α,17β-diol and androsterone (AST), and 11KDHT (0.9 µM remaining) to 11OHAST and 11KAST. 11OHA4 was converted to 11KA4 (12%) and 11KT (2.5%); and 11KT to 11KDHT (14%). In MCF-7 BUS cells, DHT was significantly glucuronidated, whereas 11KDHT was not. 11KAST was the only steroid in the MCF-7 BUS and T-47D cells that was significantly sulfated (p<0.05). In parallel we investigated sulfation in the LNCaP prostate model. Comparing sulfated to glucuronidated levels, only DHT was sulfated, 26%. Analysis showed that C19 steroids were significantly conjugated (glucuronidated + sulfated) compared to the C11-oxy C19 steroids. As there exists an intricate interplay between steroid production and inactivation, impacting pre- and post-receptor activation, efficient conjugation would limit adverse downstream effects. Our data demonstrates the production and impeded conjugation of active C11-oxy C19 steroids, allowing the prolonged presence of androgenic steroids in the cellular microenvironment. Identified for the first time is the 11OHA4-pathway in placenta and breast cancer cells, and the sulfation of 11KAST. Characterising steroidogenic pathways in in vitro models paves the direction for in vivo studies associated with characterising clinical disorders and disease, which the C11-oxy C19 steroids and their intermediates, including inactivated and conjugated end-products, have highlighted. [1] Bloem, et al. JSBMB 2015, 153; [2] Du Toit & Swart. MCE 2018, 461; [3] Du Toit & Swart, JSBMB 2020, 105497.


2020 ◽  
Vol 41 (11) ◽  
pp. 1485-1497 ◽  
Author(s):  
Alfredo García-Venzor ◽  
Edna Ayerim Mandujano-Tinoco ◽  
Araceli Ruiz-Silvestre ◽  
José Manuel Sánchez ◽  
Floria Lizarraga ◽  
...  

Abstract Multicellular tumor spheroids (MCTSs) constitute a three-dimensional culture system that recapitulates the in vivo tumor microenvironment. Tumor cells cultured as MCTSs present antineoplastic resistance due to the effect of microenvironmental signals acting upon them. In this work, we evaluated the biological function of a new microenvironment-regulated long non-coding RNA, lncMat2B, in breast cancer. In MCTSs, the expression of lncMat2B presented an increase and a zonal heterogeneity, as it was expressed principally in quiescent cells of hypoxic regions of the MCTSs. As expected, functional assays supported the role of severe hypoxia in the regulation of lncMat2B. Moreover, gain- and loss-of-function assays using a transcriptional silencing CRISPR/Cas9 system and gBlock revealed that lncMAT2B regulates the tumor-initiating phenotype. Interestingly, lncMat2B is overexpressed in a cisplatin-resistant MCF-7 cell line, and its ectopic expression in wild type MCF-7 cells increased survival to cisplatin exposure by reducing DNA damage and reactive oxygen species accumulation. lncMAT2B is a possible link between severe hypoxia, tumor-initiating phenotype and drug resistance in breast cancer cells.


Sign in / Sign up

Export Citation Format

Share Document