scholarly journals Design, Synthesis, In Vitro Anticancer Evaluation and Molecular Modelling Studies of 3,4,5-Trimethoxyphenyl-Based Derivatives as Dual EGFR/HDAC Hybrid Inhibitors

2021 ◽  
Vol 14 (11) ◽  
pp. 1177
Author(s):  
Tarek S. Ibrahim ◽  
Azizah M. Malebari ◽  
Mamdouh F. A. Mohamed

Recently, combining histone deacetylase (HDAC) inhibitors with chemotherapeutic drugs or agents, in particular epidermal growth factor receptor (EGFR) inhibitors, is considered to be one of the most encouraging strategy to enhance the efficacy of the antineoplastic agents and decrease or avoid drug resistance. Therefore, in this work, based on introducing 3,4,5-trimethoxy phenyl group as a part of the CAP moiety, in addition to incorporating 4–6 aliphatic carbons linker and using COOH or hydroxamic acid as ZBG, 12 novel EGFR/HDAC hybrid inhibitors 2a–c, 3a–c, 4a–c and 5a–c were designed, constructed, and evaluated for their anticancer activities against 4 cancer cell lines (HepG2, MCF-7, HCT116 and A549). Among all, hybrids with hydroxamic acid 4a–c and 5a, exhibited the highest inhibition against all cancer cell lines with IC50 ranging from 0.536 to 4.892 μM compared to Vorinostat (SAHA) with IC50 ranging from 2.43 to 3.63 μM and Gefitinib with IC50 ranging from 1.439 to 3.366 μM. Mechanistically, the most potent hybrids 4a–c and 5a were further tested for their EGFR and HDACs inhibitory activities. The findings disclosed that hybrid 4b displayed IC50 = 0.063 µM on the target EGFR enzyme which is slightly less potent than the standard Staurosporine (IC50 = 0.044 µM). Furthermore, hybrid 4b showed less HDAC inhibitory activity IC50 against HDAC1 (0.148), 2 (0.168), 4 (5.852), 6 (0.06) and 8 (2.257) than SAHA. In addition, the investigation of apoptotic action of the most potent hybrid 4b showed a significant increase in Bax level up to 3.75-folds, with down-regulation in Bcl2 to 0.42-fold, compared to the control. Furthermore, hybrid 4b displayed an increase in the levels of Caspases 3 and 8 by 5.1 and 3.15 folds, respectively. Additionally, the cell cycle analysis of hybrid 4b revealed that it showed programmed cell death and cell cycle arrest at G1/S phase. Moreover, all these outcomes together with the molecular docking study recommended the rationalized target hybrids 4a–c and 5a, particularly 4b, may be considered to be promising lead candidates for discovery of novel anticancer agents via dual inhibition of both EGFR/HDAC enzymes.

2020 ◽  
Vol 19 (16) ◽  
pp. 2010-2018
Author(s):  
Youstina W. Rizzk ◽  
Ibrahim M. El-Deen ◽  
Faten Z. Mohammed ◽  
Moustafa S. Abdelhamid ◽  
Amgad I.M. Khedr

Background: Hybrid molecules furnished by merging two or more pharmacophores is an emerging concept in the field of medicinal chemistry and drug discovery. Currently, coumarin hybrids have attracted the keen attention of researchers to discover their therapeutic capability against cancer. Objective: The present study aimed to evaluate the in vitro antitumor activity of a new series of hybrid molecules containing coumarin and quinolinone moieties 4 and 5 against four cancer cell lines. Materials and Methods: A new series of hybrid molecules containing coumarin and quinolinone moieties, 4a-c and 5a-c, were synthesized and screened for their cytotoxicity against prostate PC-3, breast MCF-7, colon HCT- 116 and liver HepG2 cancer cell lines as well as normal breast Hs-371 T. Results: All the synthesized compounds were assessed for their in vitro antiproliferative activity against four cancer cell lines and several compounds were found to be active. Further in vitro cell cycle study of compounds 4a and 5a revealed MCF-7 cells arrest at G2 /M phase of the cell cycle profile and induction apoptosis at pre-G1 phase. The apoptosis-inducing activity was evidenced by up-regulation of Bax protein together with the downregulation of the expression of Bcl-2 protein. The mechanism of cytotoxic activity of compounds 4a and 5a correlated to its topoisomerase II inhibitory activity. Conclusion: Hybrid molecules containing coumarin and quinolinone moieties represents a scaffold for further optimization to obtain promising anticancer agents.


2021 ◽  
Vol 13 (20) ◽  
pp. 1743-1766
Author(s):  
Islam H El Azab ◽  
Essa M Saied ◽  
Alaa A Osman ◽  
Amir E Mehana ◽  
Hosam A Saad ◽  
...  

Thiazole-substituted pyrazole is an important structural feature of many bioactive compounds, including antiviral, antitubercular, analgesic and anticancer agents. Herein we describe an efficient and facile approach for the synthesis of two series of 36 novel N-bridged pyrazole-1-phenylthiazoles. The antiproliferative activity of a set of representative compounds was evaluated in vitro against different human cancer cell lines. Among the identified compounds, compound 18 showed potent anticancer activity against the examined cancer cell lines. The in silico molecular docking study revealed that compound 18 possesses high binding affinity toward both SK1 and CDK2. Overall, these results indicate that compound 18 is a promising lead anticancer compound which may be exploited for development of antiproliferative drugs.


Proceedings ◽  
2019 ◽  
Vol 40 (1) ◽  
pp. 40
Author(s):  
Hatice Bekci ◽  
Mustafa Cam ◽  
Ahmet Cumaoglu

Prostate cancer is one of the cause of mortality and morbidity in men. High nutritional quality mushrooms have been consumed as food for a long time and Thanks to their bioactive components, they can be used in many fields such as pharmaceuticals, cosmetic products, dietary supplements and functional food production. The purpose of the research was to evaluate these derivatives against in vitro to obtain novel specific and effective anticancer agents against prostate cancer. In the study, Amanita caesarea, Sparassis crispa, Lepista nuda, Auricularia auricula, Tricholoma terreum and Lentinus tigrinus fungi were used. Anticancer activities of the compounds were evaluated in vitro by using MTT method against PC-3 and DU-143 (androgen-independent human prostate cancer cell lines) prostate cancer cell lines. Cisplatin was used as the positive sensitivity reference standard. The most effective among these fungus species biological activity against PC3 cancer cell line (IC50 = 327.34 µM), against DU-145 (IC50 = 459.19 µM).


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3923
Author(s):  
Adel A.-H. Abdel-Rahman ◽  
Amira K. F. Shaban ◽  
Ibrahim F. Nassar ◽  
Dina S. EL-Kady ◽  
Nasser S. M. Ismail ◽  
...  

New pyridine, pyrazoloyridine, and furopyridine derivatives substituted with naphthyl and thienyl moieties were designed and synthesized starting from 6-(naphthalen-2-yl)-2-oxo-4-(thiophen-2-yl)-1,2-dihydropyridine-3-carbonitrile (1). The chloro, methoxy, cholroacetoxy, imidazolyl, azide, and arylamino derivatives were prepared to obtain the pyridine-−C2 functionalized derivatives. The derived pyrazolpyridine-N-glycosides were synthesized via heterocyclization of the C2-thioxopyridine derivative followed by glycosylation using glucose and galactose. The furopyridine derivative 14 and the tricyclic pyrido[3′,2′:4,5]furo[3,2-d]pyrimidine 15 were prepared via heterocyclization of the ester derivative followed by a reaction with formamide. The newly synthesized compounds were evaluated for their ability to in vitro inhibit the CDK2 enzyme. In addition, the cytotoxicity of the compounds was tested against four different human cancer cell lines (HCT-116, MCF-7, HepG2, and A549). The CDK2/cyclin A2 enzyme inhibitory results revealed that pyridone 1, 2-chloro-6-(naphthalen-2-yl)-4-(thiophen-2-yl)nicotinonitrile (4), 6-(naphthalen-2-yl)-4-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridin-3-amine (8), S-(3-cyano-6-(naphthaen-2-yl)-4-(thiophen-2-yl)pyridin-2-yl) 2-chloroethanethioate (11), and ethyl 3-amino-6-(naphthalen-2-yl)-4-(thiophen-2-yl)furo[2,3-b]pyridine-2-carboxylate (14) are among the most active inhibitors with IC50 values of 0.57, 0.24, 0.65, 0.50, and 0.93 µM, respectively, compared to roscovitine (IC50 0.394 μM). Most compounds showed significant inhibition on different human cancer cell lines (HCT-116, MCF-7, HepG2, and A549) with IC50 ranges of 31.3–49.0, 19.3–55.5, 22.7–44.8, and 36.8–70.7 μM, respectively compared to doxorubicin (IC50 40.0, 64.8, 24.7 and 58.1 µM, respectively). Furthermore, a molecular docking study suggests that most of the target compounds have a similar binding mode as a reference compound in the active site of the CDK2 enzyme. The structural requirements controlling the CDK2 inhibitory activity were determined through the generation of a statistically significant 2D-QSAR model.


2021 ◽  
Vol 12 (6) ◽  
pp. 7633-7667

1,2,3-triazole skeleton is a privileged building block for the discovery of new promising anticancer agents. In this report, new 1,4-disubstituted 1,2,3-triazoles with the bioisoster triazole moiety were straightforwardly prepared under copper-catalyzed azide-alkyne [3+2] cycloaddition reactions (CuAAC) regime using a variety of both functional organic azides and terminal alkynes. The resulting functional 1,4-disubstituted 1,2,3-triazole compounds were fully characterized and subsequently tested for their antiproliferative activity against four different cancer cell lines. The cytotoxicity tests carried out with these 1,2,3-triazole derivatives show average IC50 values ranging from 15 to 50 µM by comparison with the standard reference drug, namely doxorubicin. The phosphonate 1,2,3-triazole derivative was found to exhibit the best antiproliferative activity among the studied compounds against the HT-1080 cell lines. It was chosen to evaluate its mode of action in these cancer cell lines. The cell cycle study showed that the phosphonate derivative, compound 8, is the most active inhibitor of the cell cycle at the G0/G1 phase, inducing apoptosis independently of Caspase-3 and causing an increase in the mitochondrial membrane potential (ΔΨm) in the HT-1080 cell lines. Molecular docking studies of this phosphonate derivative into the MMP-2 and MMP-9 metalloproteinases receptors demonstrated the relevance of triazole scaffolds and the pendant phosphonate group in establishing -anion, -alkyl and hydrogen bonding type interactions with residual components in the active MMP pocket.


2012 ◽  
Vol 13 (10) ◽  
pp. 5131-5136 ◽  
Author(s):  
Aied M. Alabsi ◽  
Rola Ali ◽  
Abdul Manaf Ali ◽  
Sami Abdo Radman Al-Dubai ◽  
Hazlan Harun ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (94) ◽  
pp. 91386-91393 ◽  
Author(s):  
Jianfa Zong ◽  
Dongxu Wang ◽  
Weiting Jiao ◽  
Liang Zhang ◽  
Guanhu Bao ◽  
...  

Oleiferasaponin C6 was isolated from Camellia oleifera Abel. and inhibits proliferation through inducing cell-cycle arrest and apoptosis on cancer cell lines in vitro.


2022 ◽  
Author(s):  
Yunqiong Gu ◽  
Yu-Jun Zhong ◽  
Mei-Qi Hu ◽  
Huan-Qing Li ◽  
Kun Yang ◽  
...  

Four mononuclear terpyridine complexes [Cu(H-La)Cl2]·CH3OH (1), [Cu(H-La)Cl]ClO4 (2), [Cu(H-Lb)Cl2]·CH3OH (3), and [Cu(H-Lb)(CH3OH)(DMSO)](ClO4)2 (4) were prepared and fully characterized. Complexes 14 exhibited higher cytotoxic activity against several tested cancer cell lines...


Author(s):  
Amira El-Sayed ◽  
Maher El-Hashash ◽  
Wael El-Sayed

Background: Cancer exerts a huge strain on the health system. The emerging resistance to the current chemotherapies demands the continuous development of new anticancer agents with lower cost, higher efficacy, and greater specificity. Objective: Development of selective small molecules targeted anticancer agents Methods: The behavior of benzoxazinone 2 towards nitrogen nucleophiles such as hydrazine hydrate, formamide, ethanolamine, aromatic amines, and thiosemcarbazide was described. The behavior of the amino quinazolinone 3 towards carbon electrophiles and P2S5 was also investigated. The antiproliferative activity of 17 new benzoxazinone derivatives was examined against the growth of three human cancer cell lines; liver HepG2, breast MCF-7, and colon HCT-29, in addition to the normal human fibroblasts WI-38 and the selectivity index was calculated. The possible molecular pathways such as the cell cycle and apoptosis were investigated. Results: Derivatives 3, 7, 8, 10, 13, and 15 had a significant (less than 10 µM) antiproliferative activity against the three cancer cell lines investigated. Derivative 7 showed the best antiproliferative profile comparable to that of doxorubicin. The selectivity index for all the effective derivatives ranged from ~5-12 folds indicating high selectivity against the cancer cells. Derivative 15 caused ~ 7-fold and 8-fold inductions in the expression of p53 and caspase3, respectively. It also caused a ~ 60% reduction in the expression of both topoisomerase II (topoII) and cyclin-dependent kinase 1 (cdk1). Derivatives 3, 7, and 8 had a similar profile; ~ 6-8-fold increases in the expression of p53 and caspase3 but these compounds were devoid of any significant effect on the expression of topoII and cdk1. Derivatives 10 and 13 were also similar and resulted in a ~6-fold elevation in the expression of caspase3, and more than 60% downregulation in the expression of topoII. The results of the gene expression of topoII and caspase 3 were confirmed by the measurement of the topoII concentration and caspase3 activity in the HepG2 cells. Conclusion: Six derivatives exerted their antiproliferative activity by arresting the cell cycle (decreasing cdk1), preventing the DNA duplication (downregulating topo II), and by inducing apoptosis (inducing p53 and caspase3). One common feature in all the six active derivatives is the presence of free amino group. These compounds have merit for further investigations.


2019 ◽  
Vol 55 (10) ◽  
pp. 1394-1397 ◽  
Author(s):  
Natalia Curado ◽  
Guillaume Dewaele-Le Roi ◽  
Sophie Poty ◽  
Jason S. Lewis ◽  
Maria Contel

Trojan horse based design affords antibody gold conjugates containing linkers that display HER2-mediated toxicity in breast cancer cell lines.


Sign in / Sign up

Export Citation Format

Share Document