scholarly journals Fabrication and Biological Activities of Plasmid DNA Gene Carrier Nanoparticles Based on Biodegradable l-Tyrosine Polyurethane

2021 ◽  
Vol 15 (1) ◽  
pp. 17
Author(s):  
Soo-Yong Park ◽  
Yang H. Yun ◽  
Bum-Joon Park ◽  
Hyung-Il Seo ◽  
Ildoo Chung

Gene therapy is a suitable alternative to chemotherapy due to the complications of drug resistance and toxicity of drugs, and is also known to reduce the occurrence of cellular mutation through the use of gene carriers. In this study, gene carrier nanoparticles with minimal toxicity and high transfection efficiency were fabricated from a biocompatible and biodegradable polymer, l-tyrosine polyurethane (LTU), which was polymerized from presynthesized desaminotyrosyl tyrosine hexyl ester (DTH) and polyethylene glycol (PEG), by using double emulsion and solvent evaporation techniques, resulting in the formation of porous nanoparticles, and then used to evaluate their potential biological activities through molecular controlled release and transfection studies. To assess cellular uptake and transfection efficiency, two model drugs, fluorescently labeled bovine serum albumin (FITC-BSA) and plasmid DNA-linear polyethylenimine (LPEI) complex, were successfully encapsulated in nanoparticles, and their transfection properties and cytotoxicities were evaluated in LX2 as a normal cell and in HepG2 and MCF7 as cancer cells. The morphology and average diameter of the LTU nanoparticles were confirmed using light microscopy, transmission electron microscopy, and dynamic light scattering, while confocal microscopy was used to validate the cellular uptake of FITC-BSA-encapsulated LTU nanoparticles. Moreover, the successful cellular uptake of LTU nanoparticles encapsulated with pDNA-LPEI and the high transfection efficiency, confirmed by gel electrophoresis and X-gal assay transfection, indicated that LTU nanoparticles had excellent cell adsorption ability, facilitated gene encapsulation, and showed the sustained release tendency of genes through transfection experiments, with an optimal concentration ratio of pDNA and LPEI of 1:10. All the above characteristics are ideal for gene carriers designed to transport and release drugs into the cytoplasm, thus facilitating effective gene therapy.

Nano LIFE ◽  
2012 ◽  
Vol 02 (01) ◽  
pp. 1230004 ◽  
Author(s):  
YOU-KYOUNG KIM ◽  
QUYNH-PHUONG LUU ◽  
MOHAMMAD ARIFUL ISLAM ◽  
YUN-JAIE CHOI ◽  
CHONG-SU CHO ◽  
...  

Gene therapy is a treatment for inborn and acquired diseases, although the development of safe and effective gene delivery system is a great challenge to make a gene therapy a success. Viral vectors have been used in a majority of clinics because of their high transfection efficiency in vitro and in vivo. However, their use has been limited because of several drawbacks, such as induction of immune response, recombination of wild-type viruses, limitation in the size of inserted gene, and difficulty in large-scale production. Nonviral vectors have been widely proposed safe alternatives to viral vectors because they have low immunogenicity, flexibility in the size of gene to be delivered, cell targetibility, and easy scalability of production, although they have low transfection efficiency compared to viral vectors. Among nonviral vectors, polyethylenimine (PEI) has been widely used as a standard gene carriers due to its high pH-buffering capacity for endosomal escape although high-molecular-weight PEI is too toxic owing to non-degradability. Recently, many types of degradable PEI have been studied due to high transfection efficiency with lower cytotoxicity. This review explains recent progress on the development of degradable PEIs as nonviral vectors. The present paper summarizes the transfection efficiency of DNA or silencing efficiency of small interfering RNA (siRNA) based on the kinds of degradable linkage between low PEI and crosslinkers. Degradable linkages, such as ester, disulfide, imines, carbamate, amide and ketal in the degradable PEIs are covered.


2017 ◽  
Vol 5 (40) ◽  
pp. 8035-8051 ◽  
Author(s):  
Jing Zhao ◽  
Qian Li ◽  
Xuefang Hao ◽  
Xiangkui Ren ◽  
Jintang Guo ◽  
...  

Non-viral gene carriers for gene therapy have been developed for many years.


Nanomedicine ◽  
2020 ◽  
Vol 15 (13) ◽  
pp. 1285-1296 ◽  
Author(s):  
Chenglong Wang ◽  
Jiayi You ◽  
Miaomiao Gao ◽  
Peipei Zhang ◽  
Guoxiong Xu ◽  
...  

Aim: To achieve safe and biocompatible gene carriers. Materials & methods: A core/shell-structured hierarchical carrier with an internal peptide/gene coacervate ‘core’ and a dextran nanogel ‘shell’ on the surface has been designed. Results: The dextran nanogels shield coacervate (DNSC) can effectively condense genes and release them in reducing environments. The dextran nanogel-based ‘shell’ can effectively shield the positive charge of the peptide/gene coacervate ‘core’, thus reducing the side effects of cationic gene carriers. In contrast with the common nonviral gene carriers that had high cytotoxicities, the DNSC showed a high transfection efficiency while maintaining a low cytotoxicity. Conclusion: The DNSC provides an effective environmentally responsive gene carrier with potential applications in the fields of gene therapy and gene carrier development.


2020 ◽  
Vol 8 (12) ◽  
pp. 2483-2494
Author(s):  
Kun Zeng ◽  
Li Ma ◽  
Wenxiu Yang ◽  
Shan Lei ◽  
Mozhen Wang ◽  
...  

Guanidinated-fluorinated α-polylysine-modified organosilica nanoparticles can form a novel raisin-bread-like gene vector, which is disintegrated in cells by GSH to show high transfection efficiency.


2017 ◽  
Vol 5 (18) ◽  
pp. 3253-3276 ◽  
Author(s):  
Ihsan Ullah ◽  
Khan Muhammad ◽  
Mary Akpanyung ◽  
Abdelilah Nejjari ◽  
Agnaldo Luis Neve ◽  
...  

Recently, synthetic gene carriers have been intensively developed owing to their promising application in gene therapy and considered as a suitable alternative to viral vectors because of several benefits.


2016 ◽  
Vol 4 (5) ◽  
pp. 997-1008 ◽  
Author(s):  
Juan Lv ◽  
Jing Yang ◽  
Xuefang Hao ◽  
Xiangkui Ren ◽  
Yakai Feng ◽  
...  

In recent years, gene therapy has evoked an increasing interest in clinical treatments of coronary diseases because it is a potential strategy to realize rapid endothelialization of artificial vascular grafts.


2009 ◽  
Vol 5 (7) ◽  
pp. 2485-2494 ◽  
Author(s):  
Jia-Hui Yu ◽  
Ji-Shan Quan ◽  
Jin Huang ◽  
Cheng-Yun Wang ◽  
Bo Sun ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (111) ◽  
pp. 91619-91632 ◽  
Author(s):  
Kishor Sarkar ◽  
Sai Rama Krishna Meka ◽  
Giridhar Madras ◽  
Kaushik Chatterjee

A novel polycationic gene carrier was prepared by conjugation of low molecular weight polyethyleneimine with gelatin through 4-bromonaphthaleic anhydride with exceptionally high transfection efficiency.


2008 ◽  
Vol 8 (5) ◽  
pp. 2308-2315 ◽  
Author(s):  
Masahiko Furuhata ◽  
Radostin Danev ◽  
Kuniaki Nagayama ◽  
Yoshifumi Yamada ◽  
Hiroko Kawakami ◽  
...  

Oligoarginine conjugates are highly efficient vectors for the delivery of plasmid DNA into cells. Decaarginine-conjugated lipid (Arg10-PEG-lipid) was synthesized and the effects of Arg10-PEG-lipid concentration at a fixed DNA concentration on transfection efficiency and the structure of the complexes were studied below and above critical micelle concentration (CMC), and at the lipid nitrogen/DNA phosphate (N/P) ratio corresponding to transfection, respectively. Arg10-PEG-lipid at the concentration below CMC showed stronger interaction with DNA by fluorescence intensity distribution analysis, and significantly higher luciferase and green fluorescent protein expression than that above CMC. A phase-contrast cryo-transmission electron microscope (cryo-TEM) experiment showed that the morphology of the complexes depended on the N/P ratio. At a low N/P ratio corresponding to that in transfection at a lipid concentration below CMC, a net-like structure developed in which plasmid DNA was involved. A further increase in the N/P ratio, a large fibrous nanostructure of complexes, was also observed. Without DNA, these structures were not obtained. The cellular uptake mechanism of complexes using flow cytometry with inhibitors suggested that complexes with two different morphologies showed similar cellular uptake and uptake mechanism, macropinocytosis. Differences in transfection efficiency of the complexes may be explained by a large fibrous nanostructure inhibiting the cellular internalization of complexes or the release of DNA from macropinosomes into cytoplasm. Arg10-PEG-lipid/DNA complexes formed a favorable nanostructure for gene delivery, depending on the N/P ratio in water.


Sign in / Sign up

Export Citation Format

Share Document