scholarly journals Comparison of Chitosan Nanoparticles and Soluplus Micelles to Optimize the Bioactivity of Posidonia oceanica Extract on Human Neuroblastoma Cell Migration

Pharmaceutics ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 655 ◽  
Author(s):  
Vieri Piazzini ◽  
Marzia Vasarri ◽  
Donatella Degl’Innocenti ◽  
Asia Guastini ◽  
Emanuela Barletta ◽  
...  

Posidonia oceanica (L.) Delile is a marine plant endemic of Mediterranean Sea endowed with interesting bioactivities. The hydroalcholic extract of P. oceanica leaves (POE), rich in polyphenols and carbohydrates, has been shown to inhibit human cancer cell migration. Neuroblastoma is a common childhood extracranial solid tumor with high rate of invasiveness. Novel therapeutics loaded into nanocarriers may be used to target the migratory and metastatic ability of neuroblastoma. Our goal was to improve both the aqueous solubility of POE and its inhibitory effect on cancer cell migration. Methods: Chitosan nanoparticles (NP) and Soluplus polymeric micelles (PM) loaded with POE have been developed. Nanoformulations were chemically and physically defined and characterized. In vitro release studies were also performed. Finally, the inhibitory effect of both nanoformulations was tested on SH-SY5Y cell migration by wound healing assay and compared to that of unformulated POE. Results: Both nanoformulations showed excellent physical and chemical stability during storage, and enhanced the solubility of POE. PM-POE improved the inhibitory effect of POE on cell migration probably due to the high encapsulation efficiency and the prolonged release of the extract. Conclusions: For the first time, a phytocomplex of marine origin, i.e., P. oceanica extract, has enhanced in terms of acqueous solubility and bioactivity once encapsulated inside nanomicelles.

Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4707
Author(s):  
Maria Camilla Bergonzi ◽  
Marzia Vasarri ◽  
Giulia Marroncini ◽  
Emanuela Barletta ◽  
Donatella Degl’Innocenti

Thymoquinone (TQ) is the main active ingredient of Nigella sativa essential oil, with remarkable anti-neoplastic activities with anti-invasive and anti-migratory abilities on a variety of cancer cell lines. However, its poor water solubility, high instability in aqueous solution and pharmacokinetic drawbacks limits its use in therapy. Soluplus® and Solutol® HS15 were employed as amphiphilic polymers for developing polymeric micelles (SSM). Chemical and physical characterization studies of micelles are reported, in terms of size, homogeneity, zeta potential, critical micelle concentration (CMC), cloud point, encapsulation efficiency (EE%), load capacity (DL), in vitro release, and stability. This study reports for the first time the anti-migratory activity of TQ and TQ loaded in SSM (TQ-SSM) in the SH-SY5Y human neuroblastoma cell line. The inhibitory effect was assessed by the wound-healing assay and compared with that of the unformulated TQ. The optimal TQ-SSM were provided with small size (56.71 ± 1.41 nm) and spherical shape at ratio of 1:4 (Soluplus:Solutol HS15), thus increasing the solubility of about 10-fold in water. The entrapment efficiency and drug loading were 92.4 ± 1.6% and 4.68 ± 0.12, respectively, and the colloidal dispersion are stable during storage for a period of 40 days. The TQ-SSM were also lyophilized to obtain a more workable product and with increased stability. In vitro release study indicated a prolonged release of TQ. In conclusion, the formulation of TQ into SSM allows a bio-enhancement of TQ anti-migration activity, suggesting that TQ-SSM is a better candidate than unformulated TQ to inhibit human SH-SY5Y neuroblastoma cell migration.


Marine Drugs ◽  
2021 ◽  
Vol 19 (10) ◽  
pp. 579
Author(s):  
Marzia Vasarri ◽  
Manuela Leri ◽  
Emanuela Barletta ◽  
Carlo Pretti ◽  
Donatella Degl’Innocenti

Neuroblastoma (NB) is a common cancer in childhood, and lethal in its high-risk form, primarily because of its high metastatic potential. Targeting cancer cell migration, and thus preventing metastasis formation, is the rationale for more effective cancer therapy against NB. Previous studies have described the leaf extract from Posidonia oceanica marine plant (POE) as an antioxidant, anti-inflammatory agent and inhibitor of cancer cell migration. This study aims to examine the POE anti-migratory role in human SH-SY5Y neuroblastoma cells and the underlying mechanisms of action. Wound healing and gelatin zymography assays showed that POE at early times inhibits cell migration and reduces pro-MMP-2 release into culture medium. By monitoring expression level of key autophagy markers by Western blot assay, a correlation between POE-induced cell migration inhibition and autophagy activation was demonstrated. Cell morphology and immunofluorescence analyses showed that POE induces neurite formation and neuronal differentiation at later times. These results suggest POE might act against cell migration by triggering early nontoxic autophagy. The POE-induced cellular morphological change toward cell differentiation might contribute to prolonging the phytocomplex anti-migratory effect to later times. Overall, these results encourage future in vivo studies to test POE applicability in neuroblastoma treatment.


2009 ◽  
Vol 46 (1) ◽  
pp. 15-21 ◽  
Author(s):  
Leonardo Ortíz-López ◽  
Sandra Morales-Mulia ◽  
Gerardo Ramírez-Rodríguez ◽  
Gloria Benítez-King

PLoS ONE ◽  
2011 ◽  
Vol 6 (10) ◽  
pp. e26615 ◽  
Author(s):  
Su-Hyeong Kim ◽  
Anuradha Sehrawat ◽  
Kozue Sakao ◽  
Eun-Ryeong Hahm ◽  
Shivendra V. Singh

Sign in / Sign up

Export Citation Format

Share Document