scholarly journals Thymoquinone-Loaded Soluplus®-Solutol® HS15 Mixed Micelles: Preparation, In Vitro Characterization, and Effect on the SH-SY5Y Cell Migration

Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4707
Author(s):  
Maria Camilla Bergonzi ◽  
Marzia Vasarri ◽  
Giulia Marroncini ◽  
Emanuela Barletta ◽  
Donatella Degl’Innocenti

Thymoquinone (TQ) is the main active ingredient of Nigella sativa essential oil, with remarkable anti-neoplastic activities with anti-invasive and anti-migratory abilities on a variety of cancer cell lines. However, its poor water solubility, high instability in aqueous solution and pharmacokinetic drawbacks limits its use in therapy. Soluplus® and Solutol® HS15 were employed as amphiphilic polymers for developing polymeric micelles (SSM). Chemical and physical characterization studies of micelles are reported, in terms of size, homogeneity, zeta potential, critical micelle concentration (CMC), cloud point, encapsulation efficiency (EE%), load capacity (DL), in vitro release, and stability. This study reports for the first time the anti-migratory activity of TQ and TQ loaded in SSM (TQ-SSM) in the SH-SY5Y human neuroblastoma cell line. The inhibitory effect was assessed by the wound-healing assay and compared with that of the unformulated TQ. The optimal TQ-SSM were provided with small size (56.71 ± 1.41 nm) and spherical shape at ratio of 1:4 (Soluplus:Solutol HS15), thus increasing the solubility of about 10-fold in water. The entrapment efficiency and drug loading were 92.4 ± 1.6% and 4.68 ± 0.12, respectively, and the colloidal dispersion are stable during storage for a period of 40 days. The TQ-SSM were also lyophilized to obtain a more workable product and with increased stability. In vitro release study indicated a prolonged release of TQ. In conclusion, the formulation of TQ into SSM allows a bio-enhancement of TQ anti-migration activity, suggesting that TQ-SSM is a better candidate than unformulated TQ to inhibit human SH-SY5Y neuroblastoma cell migration.

Pharmaceutics ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 655 ◽  
Author(s):  
Vieri Piazzini ◽  
Marzia Vasarri ◽  
Donatella Degl’Innocenti ◽  
Asia Guastini ◽  
Emanuela Barletta ◽  
...  

Posidonia oceanica (L.) Delile is a marine plant endemic of Mediterranean Sea endowed with interesting bioactivities. The hydroalcholic extract of P. oceanica leaves (POE), rich in polyphenols and carbohydrates, has been shown to inhibit human cancer cell migration. Neuroblastoma is a common childhood extracranial solid tumor with high rate of invasiveness. Novel therapeutics loaded into nanocarriers may be used to target the migratory and metastatic ability of neuroblastoma. Our goal was to improve both the aqueous solubility of POE and its inhibitory effect on cancer cell migration. Methods: Chitosan nanoparticles (NP) and Soluplus polymeric micelles (PM) loaded with POE have been developed. Nanoformulations were chemically and physically defined and characterized. In vitro release studies were also performed. Finally, the inhibitory effect of both nanoformulations was tested on SH-SY5Y cell migration by wound healing assay and compared to that of unformulated POE. Results: Both nanoformulations showed excellent physical and chemical stability during storage, and enhanced the solubility of POE. PM-POE improved the inhibitory effect of POE on cell migration probably due to the high encapsulation efficiency and the prolonged release of the extract. Conclusions: For the first time, a phytocomplex of marine origin, i.e., P. oceanica extract, has enhanced in terms of acqueous solubility and bioactivity once encapsulated inside nanomicelles.


Author(s):  
C Suja ◽  
Sismy C

The goal of this study was to formulate and evaluate norfloxacin sustained release tablets. Norfloxacin sustained release tablets were prepared by wet granulation method using two polymers such as HPMC K 100 M (hydrophilic polymer) and guar gum (natural polymer) and with three polymer ratios (0.5, 1.0 and 1.5). The prepared granules were evaluated to preformulation studies such as angle of repose, bulk density, tapped density, bulkiness, compressibility index and Hauser’s ratio. All the parameters shows that the granules having good flow properties. Then the formulated tablets were taken to evaluation studies such as hardness, weight variation, friability, drug content and thickness. All the parameters were within the acceptable limits. IR spectral analysis showed that there was no interaction between the drug and polymers. The in vitro release study was performed in phosphate buffer pH 7.4 at 293 nm. The in vitro release study showed that if the polymer ratio is increased, then the release of the drug is prolonged. HPMC K 100M shows a prolonged release when compared to guar gum.


Author(s):  
Nagda C. D. ◽  
Chotai N. P. ◽  
Patel S. B. ◽  
Soni T. J ◽  
Patel U. L

Aceclofenac (ACE) is NSAIDs of a phenyl acetic acid class. It is indicated in arthritis and osteoarthritis, rheumatoid arthritis, ankylosing spondylitis. It has short elimination half life of 4 hours. The objective of the study is to design, characterize and evaluate bioadhesive microspheres of ACE employing carbopol (CP) as bioadhesive polymer. Bioadhesive microspheres of ACE were prepared by solvent evaporation method. The prepared microspheres were free flowing and spherical in shape and characterized for drug loading, mucoadhesion test, infrared spectroscopy (IR), differential scanning colorimetry (DSC) and scanning electron microscopy (SEM). The in-vitro release studies were performed using pH 6.8 phosphate buffer. The drug loaded microspheres in a ratio of 1:5 showed 47% of drug entrapment; percentage mucoadhesion was 81% and 89% release in 10 h. The infrared spectra and DSC showed stable character of aceclofenac in the drug loaded microspheres and revealed the absence of drug-polymer interactions. SEM studies showed that the microspheres are spherical and porous in nature. The in vitro release profiles from microspheres of different polymer-drug ratios followed Higuchi model.


2020 ◽  
Vol 17 (2) ◽  
pp. 169-183 ◽  
Author(s):  
İrem Bozbey ◽  
Suat Sari ◽  
Emine Şalva ◽  
Didem Kart ◽  
Arzu Karakurt

Background: Azole antifungals are among the first-line drugs clinically used for the treatment of systemic candidiasis, a deadly type of fungal infection that threatens mostly immunecompromised and hospitalized patients. Some azole derivatives were also reported to have antiproliferative effects on cancer cells. Objective: In this study, 1-(4-trifluoromethylphenyl)-2-(1H-imidazol-1-yl)ethanone (3), its oxime (4), and a series of its novel oxime ester derivatives (5a-v) were synthesized and tested for their in vitro antimicrobial activities against certain ATCC standard strains of Candida sp. fungi and bacteria. The compounds were also tested for their cytotoxic effects against mouse fibroblast and human neuroblastoma cell lines. Molecular modeling studies were performed to provide insights into their possible mechanisms for antifungal and antibacterial actions. Methods: The compounds were synthesized by the reaction of various oximes with acyl chlorides. Antimicrobial activity of the compounds was determined according to the broth microdilution method. For the determination of cytotoxic effect, we used MTS assay. Molecular docking and QM/MM studies were performed to predict the binding mechanisms of the active compounds in the catalytic site of C. albicans CYP51 (CACYP51) and S. aureus flavohemoglobin (SAFH), the latter of which was created via homology modeling. Results: 5d, 5l, and 5t showed moderate antifungal activity against C. albicans, while 3, 5c, and 5r showed significant antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. Most of the compounds showed approximately 40-50% inhibition against the human neuroblastoma cells at 100 µM. In this line, 3 was the most potent with an IC50 value of 82.18 μM followed by 5a, 5o, and 5t. 3 and 5a were highly selective to the neuroblastoma cells. Molecular modelling results supported the hypothesis that our compounds were inhibitors of CAYP51 and SAFH. Conclusion: This study supports that oxime ester derivatives may be used for the development of new antimicrobial and cytotoxic agents.


2020 ◽  
pp. 1-9
Author(s):  
Yunhong Wang ◽  
Rong Hu ◽  
Yanlei Guo ◽  
Weihan Qin ◽  
Xiaomei Zhang ◽  
...  

OBJECTIVE: In this study we explore the method to prepare tanshinone self-microemulsifying sustained-release microcapsules using tanshinone self-microemulsion as the core material, and chitosan and alginate as capsule materials. METHODS: The optimal preparation technology of chitosan-alginate tanshinone self-microemulsifying sustained-release microcapsules was determined by using the orthogonal design experiment and single-factor analysis. The drug loading and entrapment rate were used as evaluation indexes to assess the quality of the drug, and the in vitro release rate was used to evaluate the drug release performance. RESULTS: The best technology of chitosan-alginate tanshinone self-microemulsifying sustained-release microcapsules is as follows: the concentration of alginate is 1.5%, the ratio of tanshinone self-microemulsion volume to alginate volume to chitosan mass is 1:1:0.5 (ml: ml: g), and the best concentration of calcium chloride is 2.0%. To prepare the microcapsules using this technology, the drug loading will be 0.046%, the entrapment rate will be 80.23%, and the 24-hour in vitro cumulative release rate will be 97.4%. CONCLUSION: The release of the microcapsules conforms to the Higuchi equation and the first-order drug release model and has a good sustained-release performance.


2021 ◽  
Vol 11 (10) ◽  
pp. 1908-1917
Author(s):  
Rongkang Mai ◽  
Yiyao Cao ◽  
Huitian Yu ◽  
Yong Zheng ◽  
Juke Huang

80 male Wistar rats were stochastically assigned to Sham + Vehicle group, Sham + BUT group, PD + Vehicle group and PD + BUT group. Rotenone PD model rats were prepared by subcutaneous injection of rotenone sunflower oil emulsion 2 mg/(kg · d) for 5 consecutive weeks. Butylphthalide 80 mg/(kg · d) were given to the rats in Sham + BUT group and PD + BUT group by gavage from the first day of rotenone injection for 5 weeks. Subsequently, the motor retardation ability and the morphological changes of the substantia nigra (SN) of each group were evaluated. Meanwhile, the levels of neuronal injury, apoptosis, inflammation and oxidative stress in each group of rats were assayed. The impact of BUT treatment on miR-146a-5p expression and PI3K/AKT signal pathway in rat brain tissue was assayed. Finally, by constructing a PD cell model of the neurotoxin 6-hydroxydopamine (6-OHDA)-treated human neuroblastoma cell line SH-SY5Y, the in vitro anti-PD pharmacological effect of BUT was further verified.


BioResources ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. 3615-3629 ◽  
Author(s):  
Yanli Li ◽  
Yucheng Feng ◽  
Jun Jing ◽  
Fei Yang

A novel magnetic anticancer drug carrier based on cellulose, guar gum, and Fe3O4 hydrogel microspheres was synthesized by chemical crosslinking. These microspheres were crosslinked with epoxy chloropropane and loaded with 5-fluorouracil (5-fu). The effect of the ratio of cellulose to guar gum on bead size, drug loading, and in vitro release behaviors were investigated. The influence of the magnetic content on drug loading and in vitro release behaviors were also evaluated. The magnetic hydrogel microspheres were characterized via an optical microscope, Fourier transform infrared spectroscopy, swelling behavior analysis, vibrating sample magnetometer, and ultraviolet absorption spectroscopy. The results showed that as the ratio of cellulose to guar gum increased from 3:1 to 5:1, the particle size increased from 395 to 459 um. Moreover, the drug loading capacity, encapsulation efficiency, and in vitro release behavior were influenced by the ratio of cellulose/guar gum and Fe3O4 content. Finally, the Fe3O4 particle had an adsorption effect on the drug, thereby reducing the maximum cumulative release.


2012 ◽  
Vol 32 (11) ◽  
pp. 2679-2690 ◽  
Author(s):  
Hiva Baradari ◽  
Chantal Damia ◽  
Maggy Dutreih-Colas ◽  
Etienne Laborde ◽  
Nathalie Pécout ◽  
...  

2019 ◽  
Vol 45 (6) ◽  
pp. 1399-1409
Author(s):  
Nafisa Ferdous ◽  
Sirisha Kudumala ◽  
Serena Sossi ◽  
Lucia Carvelli

AbstractAmphetamine (AMPH) is a systemic stimulant used to treat a variety of diseases including Attention Deficit Hyperactive Disorder, narcolepsy and obesity. Previous data showed that by binding to catecholamine transporters, AMPH prevents the reuptake of the neurotransmitters dopamine (DA) and norepinephrine (NE). Because AMPH, either used therapeutically at final concentrations of 1–10 µM or abused as recreational drug (50–200 µM), is taken over long periods of time, we investigated the prolonged effects of this drug on the uptake of DA. We found that, in LLC-PK1 cells stably expressing the human DA transporter (hDAT), pretreatments with 1 or 50 µM AMPH caused significant reduction in DA uptake right after the 15-h pretreatment. Remarkably, after 50 but not 1 µM AMPH pretreatment, we observed a significant reduction in DA uptake also after one, two or three cell divisions. To test whether these long-term effects induced by AMPH where conserved in a model comparable to primordial neuronal cells and native neurons, we used the human neuroblastoma cell line SH-SY5Y cells, which were reported to endogenously express both hDAT and the NE transporter. Pretreatments with 50 µM AMPH caused a significant reduction of DA uptake both right after 15 h and 3 cell divisions followed by neuro-differentiation with retinoic acid (RA) for 5 days. Under these same conditions, AMPH did not change the intracellular concentrations of ATP, ROS and cell viability suggesting, therefore, that the reduction in DA uptake was not cause by AMPH-induced toxicity. Interestingly, while 1 µM AMPH did not cause long-term effects in the LLC-PK1 cells, in the SH-SY5Y cells, it decreased the DA uptake after one, two, but not three, cell divisions and 5-day RA differentiation. These data show that besides the well-known acute effects, AMPH can also produce long-term effects in vitro that are maintained during cell division and transmitted to the daughter cells.


Sign in / Sign up

Export Citation Format

Share Document