scholarly journals Developing Clinically Relevant Dissolution Specifications for Oral Drug Products—Industrial and Regulatory Perspectives

Pharmaceutics ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 19 ◽  
Author(s):  
Mark McAllister ◽  
Talia Flanagan ◽  
Karin Boon ◽  
Xavier Pepin ◽  
Christophe Tistaert ◽  
...  

A meeting that was organized by the Academy of Pharmaceutical Sciences Biopharmaceutics and Regulatory Sciences focus groups focused on the challenges of Developing Clinically Relevant Dissolution Specifications (CRDS) for Oral Drug Products. Industrial Scientists that were involved in product development shared their experiences with in vitro dissolution and in silico modeling approaches to establish clinically relevant dissolution specifications. The regulators shared their perspectives on the acceptability of these different strategies for the development of acceptable specifications. The meeting also reviewed several collaborative initiatives that were relevant to regulatory biopharmaceutics. Following the scientific presentations, a roundtable session provided an opportunity for delegates to discuss the information that was shared during the presentations, debate key questions, and propose strategies to make progress in this critical area of regulatory biopharmaceutics. It was evident from the presentations and subsequent discussions that progress continues to be made with approaches to establish robust CRDS. Further dialogue between industry and regulatory agencies greatly assisted future developments and key areas for focused discussions on CRDS were identified.

2018 ◽  
Vol 113 ◽  
pp. 18-28 ◽  
Author(s):  
Sitaram P. Velaga ◽  
Jelena Djuris ◽  
Sandra Cvijic ◽  
Stavroula Rozou ◽  
Paola Russo ◽  
...  

Author(s):  
Dhulipalla Mounika ◽  
I. Deepika Reddy ◽  
K. Sai Chandralekha ◽  
Kapu Harika ◽  
Ramarao Nadendla ◽  
...  

Oral drug delivery is the most widely utilized route of administration among all the routes that have been explored for systemic delivery of drugs via pharmaceutical products of different dosage form. Oral route is considered most natural, uncomplicated, convenient and safe due to its ease of administration, patient acceptance and cost-effective manufacturing process. Gastroretentive drug delivery system was developed in pharmacy field and drug retention for a prolonged time has been achieved. The goal of this study was to formulate and in-vitro evaluate Ciprofloxacin HCl controlled release matrix floating tablets. Ciprofloxacin HCl floating matrix tablets were prepared by wet granulation method using two polymers such as HPMC K100M (hydrophilic polymer) and HPMC K15M. All the Evaluation parameters were within the acceptable limits. FTIR spectral analysis showed that there was no interaction between the drug and polymers. In-vitro dissolution study was carried out using USP dissolution test apparatus (paddle type) at 50 rpm. The test was carried out at 37 ± 0.5 0C in 900ml of the 0.1 N HCl buffer as the medium for eight hours. HPMC K100M shows a prolonged release when compared to HPMC K15M. These findings indicated that HPMC K100M can be used to develop novel gastroretentive controlled release drug delivery systems with the double advantage of controlled drug release at GIT pH. On comparing the major criteria in evaluation such as preformulation and in vitro drug release characteristics, the formulation F8 was selected as the best formulation, as it showed the drug content as 99±0.4% and swelling index ratio was 107.14, and in-vitro drug released 61.31±0.65% up to 8 hours. Results indicated that controlled Ciprofloxacin HCl release was directly proportional to the concentration of HPMC K100M and the release of drug followed non-Fickian diffusion. Based on all the above evaluation parameters it was concluded that the formulation batch F8 was found to be best formulation among the formulations F1 to F8 were prepared.


Author(s):  
JOSE RAUL MEDINA-LOPEZ ◽  
LUIS ANTONIO CEDILLO-DIAZ ◽  
MARCELA HURTADO

Objective: Due to quality of generic formulations depends on available information of reference drug products the aim of this work was to perform an in vitro dissolution study of two doses of propranolol-HCl and ranitidine-HCl reference tablets using USP basket or paddle apparatus and flow-through cell method. Methods: Two doses of propranolol-HCl (10-mg and 80-mg) and ranitidine-HCl (150-mg and 300-mg) of Mexican reference products were used. Dissolution profiles of propranolol-HCl were obtained with USP basket apparatus at 100 rpm and 1000 ml of 1% hydrochloric acid. Profiles of ranitidine-HCl were determined with USP paddle apparatus at 50 rpm and 900 ml of distilled water. All formulations were also studied with the flow-through cell method using laminar flow at 16 ml/min. Dissolution profiles were compared by model-independent (f2 similarity factor, mean dissolution time and dissolution efficiency) and model-dependent methods (dissolution data adjusted to some mathematical equations). Time data, derived from these adjustments, as t50%, t63.25%, and t85% were used to compare dissolution profiles. Results: With all approaches used and being high solubility drugs significant differences were found between low and high doses and between USP dissolution apparatuses (*P<0.05). Conclusion: In vitro dissolution performance of two doses of propranolol-HCl and ranitidine-HCl was not expected. Considering the same USP dissolution apparatus, the reference tablets did not allow the simultaneous release of the used doses. The results could be of interest for pharmaceutical laboratories or health authorities that classify some drug products as a reference to be used in dissolution and bioequivalence studies.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Heran C. Bhakta ◽  
Jessica M. Lin ◽  
William H. Grover

AbstractMany solid-dose oral drug products are engineered to release their active ingredients into the body at a certain rate. Techniques for measuring the dissolution or degradation of a drug product in vitro play a crucial role in predicting how a drug product will perform in vivo. However, existing techniques are often labor-intensive, time-consuming, irreproducible, require specialized analytical equipment, and provide only “snapshots” of drug dissolution every few minutes. These limitations make it difficult for pharmaceutical companies to obtain full dissolution profiles for drug products in a variety of different conditions, as recommended by the US Food and Drug Administration. Additionally, for drug dosage forms containing multiple controlled-release pellets, particles, beads, granules, etc. in a single capsule or tablet, measurements of the dissolution of the entire multi-particle capsule or tablet are incapable of detecting pellet-to-pellet variations in controlled release behavior. In this work, we demonstrate a simple and fully-automated technique for obtaining dissolution profiles from single controlled-release pellets. We accomplished this by inverting the drug dissolution problem: instead of measuring the increase in the concentration of drug compounds in the solution during dissolution (as is commonly done), we monitor the decrease in the buoyant mass of the solid controlled-release pellet as it dissolves. We weigh single controlled-release pellets in fluid using a vibrating tube sensor, a piece of glass tubing bent into a tuning-fork shape and filled with any desired fluid. An electronic circuit keeps the glass tube vibrating at its resonance frequency, which is inversely proportional to the mass of the tube and its contents. When a pellet flows through the tube, the resonance frequency briefly changes by an amount that is inversely proportional to the buoyant mass of the pellet. By passing the pellet back-and-forth through the vibrating tube sensor, we can monitor its mass as it degrades or dissolves, with high temporal resolution (measurements every few seconds) and mass resolution (700 nanogram resolution). As a proof-of-concept, we used this technique to measure the single-pellet dissolution profiles of several commercial controlled-release proton pump inhibitors in simulated stomach and intestinal contents, as well as comparing name-brand and generic formulations of the same drug. In each case, vibrating tube sensor data revealed significantly different dissolution profiles for the different drugs, and in some cases our method also revealed differences between different pellets from the same drug product. By measuring any controlled-release pellets, particles, beads, or granules in any physiologically-relevant environment in a fully-automated fashion, this method can augment and potentially replace current dissolution tests and support product development and quality assurance in the pharmaceutical industry.


Author(s):  
Rina G. Maskare ◽  
Nitin H. Indurwade ◽  
Aparna O. Yadav ◽  
Ajita S. Kesharwani ◽  
Aishwarya A. Jain ◽  
...  

The present work concerned with formulation and evaluation of fast disintegrating tablet of Topiramate by using natural superdisintegrants like Trigonellafoenum graceum (fenugreek) powder, Plantago ovata powder, dehydrated banana powder, soy polysaccharide, linseed powder. Topiramate is an antiepileptic drug and also used in migraine. Preformulation studies like solubility, melting point were studied. Five formulations were prepared using different natural superdisintegrant with same concentrations by using direct compression method. All the formulations were evaluated for precompression parameters and all the parameters were found to be within the pharmacopoeial limits. Post compression parameters like hardness of the tablet, thickness of the tablet, friability test, weight variation, disintegration test, in-vitro dissolution test, drug content were performed. The formulation F-5 containing Trigonellafoenum-graceum (fenugreek) powder shown disintegration time of 12sec. Rapid disintegration of the Trigonellafoenum-graceum due to its rapid water absorbency swells in water to the extent of 200–300% disintegrates rapidly for quick and complete disintegration of the tablet. An accelerated stability study on optimized formulation was performed and it was found to be stable. It can be concluded that Trigonellafoenum-graceum (fenugreek) powder as Superdisintegrant showed better release than soy polysaccharide, plantago ovata powder, dehydrated banana powder and linseed powder.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Harshal Ashok Pawar ◽  
Pooja Rasiklal Joshi

The development of a meaningful dissolution procedure for drug products with limited water solubility has been a challenge to the pharmaceutical industry. Satranidazole (BCS Class II drug) is a new nitroimidazole derivative with potent antiamoebic action. There is no official dissolution medium available in the literature. In the present study, parameters such as saturation solubility in different pH medium, dissolution behavior of formulations, influence of sink conditions, stability, and discriminatory effect of dissolution testing were studied for the selection of a proper dissolution medium. Results of solubility data revealed that solubility of Satranidazole decreases with an increase in pH. Satranidazole showed better sink condition in 0.1 N HCl as compared to other media. The drug and marketed formulations were stable in the dissolution media used. An agitation speed of 75 rpm showed a more discriminating drug release profile than 50 rpm. Using optimized dissolution parameters (paddle at 75 rpm, 900 mL 0.1 N HCl) greater than 80% of the label amount is released over 60 minutes. UV-spectroscopic method used was validated for the specificity, linearity, precision, robustness, and solution stability. The method was successfully applied to granular formulations and also to marketed tablets containing 300 mg Satranidazole.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2158
Author(s):  
Khaled H. Al Zahabi ◽  
Hind Ben tkhayat ◽  
Ehab Abu-Basha ◽  
Al Sayed Sallam ◽  
Husam M. Younes

Spray-congealing (SPC) technology was utilized to prepare lipid-based microparticles (MP) capable of sustaining the release of Vildagliptin (VG) for use as a once-daily treatment for type 2 diabetes mellitus. VG microparticles were prepared using Compritol® and Gelucire®50/13 as lipid carriers in the presence of various amounts of Carbomer 934 NF. The lipid carriers were heated to 10 °C above their melting points, and VG was dispersed in the lipid melt and sprayed through the heated two-fluid nozzle of the spray congealer to prepare the VG-loaded MP (VGMP). The microparticles produced were then compressed into tablets and characterized for their morphological and physicochemical characteristics, content analysis, in vitro dissolution, and in vivo bioavailability studies in mixed-breed dogs. The VGMP were spherical with a yield of 76% of the total amount. VG was found to be in its semicrystalline form, with a drug content of 11.11% per tablet and a percentage drug recovery reaching 98.8%. The in vitro dissolution studies showed that VG was released from the tableted particles in a sustained-release fashion for up to 24 h compared with the immediate-release marketed tablets from which VG was completely released within 30 min. The in vivo pharmacokinetics studies reported a Cmax, Tmax, T1/2, and MRT of 118 ng/mL, 3.4 h, 5.27 h, and 9.8 h, respectively, for the SPC formulations, showing a significant difference (p < 0.05)) from the pk parameters of the immediate-release marketed drug (147 ng/mL, 1 h, 2.16 h, and 2.8 h, respectively). The area under the peak (AUC) of both the reference and tested formulations was comparable to indicate similar bioavailabilities. The in vitro–in vivo correlation (IVIVC) studies using multiple level C correlations showed a linear correlation between in vivo pharmacokinetics and dissolution parameters. In conclusion, SPC was successfully utilized to prepare a once-daily sustained-release VG oral drug delivery system.


1970 ◽  
Vol 2 (2) ◽  
pp. 72-75 ◽  
Author(s):  
Naz Hasan Huda ◽  
Yeakuty Marzan Jhanker ◽  
AFM Shahid-Ud-Daula ◽  
Most Nazma Parvin ◽  
Shammy Sarwar

Commercially available twenty national and four multinational brands of Amoxicillin Trihydrate capsules werestudied  in water  for 60 minutes using USP reference dissolution apparatus. All, except  two national brands(Code: NB-8 and NB-15); complied with  the USP  in vitro dissolution specification  for drug release (not  lessthan 80% of the labelled amount of amoxicillin trihydrate should be dissolved in 60 minutes). Drug releasesfrom those two brands were 75% and 67% respectively within the specified time period. Key words: In vitro Dissolution; Market preparations; Amoxicillin Trihydrate; Capsule; National Brand;Multinational Brand.DOI: 10.3329/sjps.v2i2.5827Stamford Journal of Pharmaceutical Sciences Vol.2(2) 2009: 72-75


Sign in / Sign up

Export Citation Format

Share Document