scholarly journals Highly Osmotic Oxidized Sucrose-Crosslinked Polyethylenimine for Gene Delivery Systems

Pharmaceutics ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 87
Author(s):  
Jaehong Park ◽  
Kyusik Kim ◽  
Sohee Jeong ◽  
Migyeom Lee ◽  
Tae-il Kim

In this work, highly osmotic oxidized sucrose-crosslinked polyethylenimine (SP2K) polymers were developed for gene delivery systems, and the transfection mechanism is examined. First, periodate-oxidized sucrose and polyethylenimine 2K (PEI2K) were crosslinked with various feed ratios via reductive amination. The synthesis was confirmed by 1H NMR and FTIR. The synthesized SP2K polymers could form positively charged (~40 mV zeta-potential) and nano-sized (150–200 nm) spherical polyplexes with plasmid DNA (pDNA). They showed lower cytotoxicity than PEI25K but concentration-dependent cytotoxicity. Among them, SP2K7 and SP2K10 showed higher transfection efficiency than PEI25K in both serum and serum-free conditions, revealing the good serum stability. It was found that SP2K polymers possessed high osmolality and endosome buffering capacity. The transfection experiments with cellular uptake inhibitors suggest that the transfection of SP2K polymers would progress by multiple pathways, including caveolae-mediated endocytosis. It was also thought that caveolae-mediated endocytosis of SP2K polyplexes would be facilitated through cyclooxygenase-2 (COX-2) expression induced by high osmotic pressure of SP2K polymers. Confocal microscopy results also supported that SP2K polyplexes would be internalized into cells via multiple pathways and escape endosomes efficiently via high osmolality and endosome buffering capacity. These results demonstrate the potential of SP2K polymers for gene delivery systems.

Nano LIFE ◽  
2010 ◽  
Vol 01 (03n04) ◽  
pp. 219-237 ◽  
Author(s):  
SHARDOOL JAIN ◽  
HUSAIN ATTARWALA ◽  
MANSOOR AMIJI

Gene therapy holds tremendous promise in prevention and treatment of diseases as the approach is based on regulating the expression of genes that are responsible for pathological conditions. The biggest bottleneck for gene delivery has been the development of safe and efficacious delivery systems. Although non-viral vectors are considered as much safer options than their viral counterparts, they suffer from low transfection efficiency. In this review, we highlight the role of non-condensing polymeric delivery systems for oral and systemic gene delivery. Using evidence from contemporary literature, non-condensing polymeric microparticle and nanoparticle systems afford physical encapsulation of the nucleic acid construct and can be engineered for targeted delivery to tissues and cells. Additionally, these systems have shown less toxicity and afford sustained cytoplasmic DNA delivery for efficient nuclear uptake and transfection for both DNA vaccines and therapeutic genes.


2017 ◽  
Vol 5 (42) ◽  
pp. 8322-8329 ◽  
Author(s):  
Shuqi Dong ◽  
Qixian Chen ◽  
Wei Li ◽  
Zhu Jiang ◽  
Jianbiao Ma ◽  
...  

The dendritic catiomer using biocompatible Zr-MOFs as the core exhibited a markedly higher transfection efficiency and lower cytotoxicity than the commercial gold standard branched PEI25k in A549 cells.


2007 ◽  
Vol 130 (2) ◽  
pp. 107-113 ◽  
Author(s):  
Jiji Chen ◽  
Buning Tian ◽  
Xiang Yin ◽  
Yanqiong Zhang ◽  
Duosha Hu ◽  
...  

2004 ◽  
Vol 15 (2) ◽  
pp. 413-423 ◽  
Author(s):  
Bertrand Le Bon ◽  
Nathalie Van Craynest ◽  
Jean-Michel Daoudi ◽  
Christophe Di Giorgio ◽  
Abraham J. Domb ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Kitae Ryu ◽  
Gyeong Jin Lee ◽  
Ji-yeong Choi ◽  
Taewan Kim ◽  
Tae-il Kim

Self-assembling multifunctional peptide was designed for gene delivery systems. The multifunctional peptide (MP) consists of cellular penetrating peptide moiety (R8), matrix metalloproteinase-2 (MMP-2) specific sequence (GPLGV), pH-responsive moiety (H5), and hydrophobic moiety (palmitic acid) (CR8GPLGVH5-Pal). MP was oxidized to form multifunctional peptide dimer (MPD) by DMSO oxidation of thiols in terminal cysteine residues. MPD could condense pDNA successfully at a weight ratio of 5. MPD itself could self-assemble into submicron micelle particles via hydrophobic interaction, of which critical micelle concentration is about 0.01 mM. MPD showed concentration-dependent but low cytotoxicity in comparison with PEI25k. MPD polyplexes showed low transfection efficiency in HEK293 cells expressing low level of MMP-2 but high transfection efficiency in A549 and C2C12 cells expressing high level of MMP-2, meaning the enhanced transfection efficiency probably due to MMP-induced structural change of polyplexes. Bafilomycin A1-treated transfection results suggest that the transfection of MPD is mediated via endosomal escape by endosome buffering ability. These results show the potential of MPD for MMP-2 targeted gene delivery systems due to its multifunctionality.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2609
Author(s):  
Emi Haladjova ◽  
Stanislav Rangelov ◽  
Christo Tsvetanov

Poly(2-oxazoline)s (POx) are an attractive platform for the development of non-viral gene delivery systems. The combination of POx moieties, exhibiting excellent biocompatibility, with DNA-binding polyethyleneimine (PEI) moieties into a single copolymer chain is a promising approach to balance toxicity and transfection efficiency. The versatility of POx in terms of type of substituent, copolymer composition, degree of polymerization, degree of hydrolysis, and chain architecture, as well as the introduction of stimuli-responsive properties, provides opportunities to finely tune the copolymer characteristics and physicochemical properties of the polyplexes to increase the biological performance. An overview of the current state of research in the POx–PEI-based gene delivery systems focusing particularly on thermosensitive POx is presented in this paper.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 793
Author(s):  
J.F.A. Valente ◽  
P. Pereira ◽  
A. Sousa ◽  
J.A. Queiroz ◽  
F. Sousa

Gene therapy could be simply defined as a strategy for the introduction of a functional copy of desired genes in patients, to correct some specific mutation and potentially treat the respective disorder. However, this straightforward definition hides very complex processes related to the design and preparation of the therapeutic genes, as well as the development of suitable gene delivery systems. Within non-viral vectors, polymeric nanocarriers have offered an ideal platform to be applied as gene delivery systems. Concerning this, the main goal of the study was to do a systematic evaluation on the formulation of pDNA delivery systems based on the complexation of different sized plasmids with chitosan (CH) or polyethyleneimine (PEI) polymers to search for the best option regarding encapsulation efficiency, surface charge, size, and delivery ability. The cytotoxicity and the transfection efficiency of these systems were accessed and, for the best p53 encoding pDNA nanosystems, the ability to promote protein expression was also evaluated. Overall, it was showed that CH polyplexes are more efficient on transfection when compared with the PEI polyplexes, resulting in higher P53 protein expression. Cells transfected with CH/p53-pDNA polyplexes presented an increase of around 54.2% on P53 expression, while the transfection with the PEI/p53-pDNA polyplexes resulted in a 32% increase.


Sign in / Sign up

Export Citation Format

Share Document