scholarly journals The Therapeutic Effect of Human Serum Albumin Dimer-Doxorubicin Complex against Human Pancreatic Tumors

Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1209
Author(s):  
Ryo Kinoshita ◽  
Yu Ishima ◽  
Victor T. G. Chuang ◽  
Hiroshi Watanabe ◽  
Taro Shimizu ◽  
...  

Human serum albumin (HSA) is a versatile drug carrier with active tumor targeting capacity for an antitumor drug delivery system. Nanoparticle albumin-bound (nab)-technology, such as nab-paclitaxel (Abraxane®︎), has attracted significant interest in drug delivery research. Recently, we demonstrated that HSA dimer (HSA-d) possesses a higher tumor distribution than HSA monomer (HSA-m). Therefore, HSA-d is more suitable as a drug carrier for antitumor therapy and can improve nab technology. This study investigated the efficacy of HSA-d-doxorubicin (HSA-d-DOX) as next-generation nab technology for tumor treatment. DOX conjugated to HSA-d via a tunable pH-sensitive linker for the controlled release of DOX. Lyophilization did not affect the particle size of HSA-d-DOX or the release of DOX. HSA-d-DOX showed significantly higher cytotoxicity than HSA-m-DOX in vitro. In the SUIzo Tumor-2 (SUIT2) human pancreatic tumor subcutaneous inoculation model, HSA-d-DOX could significantly inhibit tumor growth without causing serious side effects, as compared to the HSA binding DOX prodrug, which utilized endogenous HSA as a nano-drug delivery system (DDS) carrier. These results indicate that HSA-d could function as a natural solubilizer of insoluble drugs and an active targeting carrier in intractable tumors with low vascular permeability, such as pancreatic tumors. In conclusion, HSA-d can be an effective drug carrier for the antitumor drug delivery system against human pancreatic tumors.

2021 ◽  
Vol 28 ◽  
Author(s):  
Zhenyu Chen ◽  
Zhongling Luo ◽  
Jiayao Lyu ◽  
Jianxin Wang ◽  
Zhongbing Liu ◽  
...  

Background: Methotrexate (MTX) is the representative drug among the disease-modifying anti-rheumatic drugs. But the conventional treatment with MTX showed many limitations and side effects. Objective: To strengthen the targeting ability and circulation time of MTX in the treatment of rheumatoid arthritis, the present study focused on developing a novel drug delivery system of methotrexate-loaded human serum albumin nanoparticles (MTX-NPs) modified by mannose, which referred as MTX-M-NPs. Methods: Firstly, mannose-derived carboxylic acid was synthesized and further modified on the surface of MTX-NPs to prepare MTX-M-NPs. The formulation of nanoparticles was optimized by method of central composite design (CCD), with the drug lipid ratio, oil-aqueous ratio, and cholesterol or lecithin weight as the independent variables. The average particle size and encapsulation efficiency were the response variables. Response of different formulations was calculated and the response surface diagram, contour diagram and mathematical equation were used to relate the dependent and independent variables to predict the optimal formula ratio. The uptake of MTX-M-NPs by neutrophils was studied through the laser confocal detection. Further, MTX-M-NPs was subjected to assess the pharmacokinetics profile after intravenous injection with Sprague-Dawley rats. Results: This targeting drug delivery system was successfully developed. Results from Nuclear Magnetic Resonance and Fourier Transform Infrared Spectroscopy analysis can verify the successful preparation of this drug delivery system. Based on the optimized formula, MTX-M-NPs was prepared with a particle size of 188.17 ± 1.71 nm and an encapsulation rate of 95.55 ± 0.33%. MTX-M-NPs displayed significantly higher cellular uptake than MTX-NPs. The pharmacokinetic results showed that MTX-M-NPs could prolong the in vivo circulation time of MTX. Conclusion: This targeting drug delivery system laid a promising foundation for the treatment of RA.


2008 ◽  
Vol 26 (8) ◽  
pp. 1385-1389 ◽  
Author(s):  
Qiu-Ju ZHOU ◽  
Ya-Jing BI ◽  
Jun-Feng XIANG ◽  
Ya-Lin TANG ◽  
Qian-Fan YANG ◽  
...  

Soft Matter ◽  
2014 ◽  
Vol 10 (27) ◽  
pp. 4869-4874 ◽  
Author(s):  
Yue Gao ◽  
Roxanne E. Kieltyka ◽  
Wim Jesse ◽  
Ben Norder ◽  
Alexander V. Korobko ◽  
...  

A biohybrid hydrogel system using human serum albumin as a simultaneous drug carrier and covalent cross-linker was established for macroscale drug delivery.


2019 ◽  
Vol 7 (12) ◽  
pp. 5270-5282 ◽  
Author(s):  
Yuxin Wang ◽  
Diya Xie ◽  
Jiongru Pan ◽  
Chengwan Xia ◽  
Lei Fan ◽  
...  

To ensure site–specific drug release in tumor cells and cancer-associated fibroblasts and reduce the systemic toxicity of chemotherapy, a novel drug delivery system called human serum albumin-indocyanine green-cisplatin nanoparticles was developed.


2018 ◽  
Vol 166 ◽  
pp. 214-222 ◽  
Author(s):  
Oznur Akbal ◽  
Tayfun Vural ◽  
Soheil Malekghasemi ◽  
Betül Bozdoğan ◽  
Emir Baki Denkbaş

2005 ◽  
Vol 288-289 ◽  
pp. 125-128 ◽  
Author(s):  
Shen Guo Wang ◽  
Qing Cai ◽  
Jian Zhong Bei ◽  
Wei Yun Shi ◽  
Li Xin Xie

In the article a kind biodegradable drug carrier (glycolide-co-lactide-co-caprolactone) tricomponent copolymer (PGLC) was synthesized by ring opening copolymerization of glycolide (GA), lactide (LA) and ε-caprolactone (CL), and was used to manufacture an implantable drug preparation---Cyclosporine-PGLC drug delivery system (Cs-PGLC DDS).The Cs could slowly release from the Cs-PGLC DDS near linearly and last for a long time in vitro. A clinically significant Cs concentration in the cornea and anterior chamber could be achieved by implanting the Cs-PGLC DDS in anterior chamber. It was demonstrated that the Cs-PGLC DDS is a long-effective intraocular immunosuppressive agent for remaining corneal allograft clear and significantly prolong its survival time.


Author(s):  
Tania Caputo ◽  
Angela Maria Cusano ◽  
Menotti Ruvo ◽  
Anna Aliberti ◽  
Andrea Cusano

Background: Drug delivery systems based on Human Serum Albumin (HSA) have been widely investigated due to their capability to interact with several molecules together with their nontoxicity, non-immunogenicity and biocompatibility. Sorafenib (SOR) is a kinase inhibitor used as the first-line treatment in hepatic cancer. However, because of its several intrinsic drawbacks (low solubility and bioavailability), there is a growing need for discovering new carriers able to overcome the current limitations. Objective: To study HSA particles loaded with SOR as a thermal responsive drug delivery system. Method: A detailed spectroscopy analysis of the HSA and SOR interaction in solution was carried out in order to characterize the temperature dependence of the complex. Based on this study, the synthesis of HSA particles loaded with SOR was optimized. Particles were characterized by Dynamic Light Scattering, Atomic Force Microscopy and by spectrofluorometer. Encapsulation efficiency and in vitro drug release were quantified by RP-HPLC. Results: HSA particles were monodispersed in size (≈ 200 nm); encapsulation efficiency ranged from 25% to 58%. Drug release studies that were performed at 37 °C and 50 °C showed that HS5 particles achieved a drug release of 0.430 µM in 72 hours at 50 °C in PBS buffer, accomplishing a 4.6-fold overall SOR release enhancement following a temperature increase from 37 °C to 50 °C. Conclusion: The system herein presented has the potential to exert a therapeutic action (in the nM range) triggering a sustained temperature-controllable release of relevant drugs.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yi-Zhi Zhu ◽  
Di Xu ◽  
Zhen Liu ◽  
Tian Tian ◽  
Fei Deng ◽  
...  

Triple-negative breast cancer (TNBC) is a highly malignant tumor. At present, there are still no targeted drugs for TNBC. Clinical chemotherapeutic drugs, such as doxorubicin (DOX), have the characteristic of nontargeted distribution in treatment of TNBC, causing severe side effects. Therefore, new target treatment strategies for TNBC are of urgent need. It was speculated that glutamine could be a potential target because it is in high demand by TNBC. In this study, we found that the transporter for glutamine, ASCT2 (solute carrier family 1 member 5 (SLC1A5)), is highly expressed in TNBC by analysis of data from The Cancer Genome Atlas (TCGA) and experiments in vitro. Based on this, glutamine was grafted onto a polymeric drug carrier in order to develop a tumor-targeting drug delivery system for treatment of TNBC. Firstly, pH-responsive glutamine-PEG5000-b-PAE10000 (Gln-PEG-b-PAE) copolymers were synthesized using Fmoc-PEG5000-b-PAE10000 (Fmoc-PEG-b-PAE) copolymers. Then, Gln-PEG-b-PAE@DOX micelles were prepared by loading DOX to Gln-PEG-b-PAE copolymer using a solvent casting technology. In vitro, Gln-PEG-b-PAE@DOX micelles exhibited pH-dependent micellization-decellularization behavior; namely, they can rapidly release DOX in acidic environment of pH 6.0 but release very slowly in physiological condition. Moreover, glutamine competition experiment showed that Gln-PEG-b-PAE@DOX micelles had the ability to target MDA-MB-231 cells. Compared to free DOX, Gln-PEG-b-PAE@DOX micelles had significantly greater cytotoxic effect and antiproliferative activity against MDA-MB-231 cells. In vivo, compared to free DOX and mPEG-b-PAE@DOX micelles, Gln-PEG-b-PAE@DOX micelles significantly inhibited tumor growth in tumor-bearing mice. Therefore, Gln-PEG-b-PAE@DOX micelles, as a tumor-targeting drug delivery system, may provide a new method for the treatment of TNBC.


Sign in / Sign up

Export Citation Format

Share Document