scholarly journals Plate-like Alginate Microparticles with Disulfiram–SPIO–Coencapsulation: An In Vivo Study for Combined Therapy on Ovarian Cancer

Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1348
Author(s):  
Meng-Yi Bai ◽  
Mu-Hsien Yu ◽  
Ting-Teng Wang ◽  
Shiu-Hsin Chen ◽  
Yu-Chi Wang

Disulfiram is a drug used to support the treatment of chronic alcoholism. Recently, it has been found to have an off-label ability to inhibit the growth of ovarian cancer cells. However, the original formulation was designed for use via oral administration, which is not suitable to be given by a direct spray on the affected area. Therefore, in this study, we designed and prepared alginate (ALG) microparticles loaded with disulfiram and superparamagnetic iron oxide (cross-linking disulfiram/SPIO/ALG MPs), which have great potential application for inhibiting the growth of ovarian cancer simultaneously via two treatments, i.e., chemotherapy and hyperthermia. The drug-encapsulating alginate microparticles were prepared using an electrospray system and then cross-linked with calcium chloride ions. The particles were observed by optical microscopy and scanning electron microscopy, and found to be approximately 200 μm in diameter. The disc-shape morphology of the microparticles could be controlled by up to 95%. The drug-encapsulation efficiency of the microparticles reached 98%, and the suppression of tumor growth for the free-form disulfiram-treated group and disulfiram/SPIO/ALG MPs-treated group were 48.2% and 55.9% of tumor volume reduction, respectively, compared with a cisplatin-treated group. A hyperthermic effect can be achieved by applying a magnetic field to oscillate SPIO. The results of this study showed that these cross-linking disulfiram/SPIO/ALG MPs are potential drug carriers for the treatment of ovarian cancer.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Daryoush Shahbazi-Gahrouei ◽  
Mohammad Abdolahi

The aim of this study is to find out the development and application of MUC1-expressing ovarian cancer (OVCAR3) by C595 monoclonal antibody-conjugated superparamagnetic iron oxide nanoparticles (SPIONs) using MR imaging. At the end, its use as a nanosized contrast agent MR imaging probe for ovarian cancer detection was investigated. The strategy is to use SPIONs attached to C595 mAb that binds to the MUC1, to specifically detect ovarian cancer cells. Anticancer effects and MR imaging parameters of the prepared nanoconjugate was investigated both underin vitroandin vivoexperiments. The characterization of nanoconjugate includes its size, cell toxicity, flow cytometry, Prussian blue staining test and its cellular uptake as well as its biodistribution, and MR imaging was also investigated. The findings of the study showed good tumor accumulation and detection, noin vivotoxicity, and potential selective antiovarian cancer activity. Overall, based on the findings SPIONs-C595 nanosized probe is a selective ovarian molecular imaging modality. Further subsequent clinical trials appear warranted.


Author(s):  
Conghui Wang ◽  
Jiaying Wang ◽  
Xiameng Shen ◽  
Mingyue Li ◽  
Yongfang Yue ◽  
...  

Abstract Background Metastasis is the key cause of death in ovarian cancer patients. To figure out the biological nature of cancer metastasis is essential for developing effective targeted therapy. Here we investigate how long non-coding RNA (lncRNA) SPOCD1-AS from ovarian cancer extracellular vesicles (EVs) remodel mesothelial cells through a mesothelial-to-mesenchymal transition (MMT) manner and facilitate peritoneal metastasis. Methods EVs purified from ovarian cancer cells and ascites of patients were applied to mesothelial cells. The MMT process of mesothelial cells was assessed by morphology observation, western blot analysis, migration assay and adhesion assay. Altered lncRNAs of EV-treated mesothelial cells were screened by RNA sequencing and identified by qRT-PCR. SPOCD1-AS was overexpressed or silenced by overexpression lentivirus or shRNA, respectively. RNA pull-down and RNA immunoprecipitation assays were conducted to reveal the mechanism by which SPOCD1-AS remodeled mesothelial cells. Interfering peptides were synthesized and applied. Ovarian cancer orthotopic implantation mouse model was established in vivo. Results We found that ovarian cancer-secreted EVs could be taken into recipient mesothelial cells, induce the MMT phenotype and enhance cancer cell adhesion to mesothelial cells. Furthermore, SPOCD1-AS embedded in ovarian cancer-secreted EVs was transmitted to mesothelial cells to induce the MMT process and facilitate peritoneal colonization in vitro and in vivo. SPOCD1-AS induced the MMT process of mesothelial cells via interacting with G3BP1 protein. Additionally, G3BP1 interfering peptide based on the F380/F382 residues was able to block SPOCD1-AS/G3BP1 interaction, inhibit the MMT phenotype of mesothelial cells, and diminish peritoneal metastasis in vivo. Conclusions Our findings elucidate the mechanism associated with EVs and their cargos in ovarian cancer peritoneal metastasis and may provide a potential approach for metastatic ovarian cancer therapeutics.


2021 ◽  
Vol 7 (9) ◽  
pp. eabb0737
Author(s):  
Zhengnan Yang ◽  
Wei Wang ◽  
Linjie Zhao ◽  
Xin Wang ◽  
Ryan C. Gimple ◽  
...  

Ovarian cancer represents a highly lethal disease that poses a substantial burden for females, with four main molecular subtypes carrying distinct clinical outcomes. Here, we demonstrated that plasma cells, a subset of antibody-producing B cells, were enriched in the mesenchymal subtype of high-grade serous ovarian cancers (HGSCs). Plasma cell abundance correlated with the density of mesenchymal cells in clinical specimens of HGSCs. Coculture of nonmesenchymal ovarian cancer cells and plasma cells induced a mesenchymal phenotype of tumor cells in vitro and in vivo. Phenotypic switch was mediated by the transfer of plasma cell–derived exosomes containing miR-330-3p into nonmesenchymal ovarian cancer cells. Exosome-derived miR-330-3p increased expression of junctional adhesion molecule B in a noncanonical fashion. Depletion of plasma cells by bortezomib reversed the mesenchymal characteristics of ovarian cancer and inhibited in vivo tumor growth. Collectively, our work suggests targeting plasma cells may be a novel approach for ovarian cancer therapy.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 3939
Author(s):  
Tianqi Xu ◽  
Anzhelika Vorobyeva ◽  
Alexey Schulga ◽  
Elena Konovalova ◽  
Olga Vorontsova ◽  
...  

Efficient treatment of disseminated ovarian cancer (OC) is challenging due to its heterogeneity and chemoresistance. Overexpression of human epidermal growth factor receptor 2 (HER2) and epithelial cell adhesion molecule (EpCAM) in approx. 30% and 70% of ovarian cancers, respectively, allows for co-targeted treatment. The clinical efficacy of the monoclonal antibody trastuzumab in patients with HER2-positive breast, gastric and gastroesophageal cancers makes it readily available as the HER2-targeting component. As the EpCAM-targeting component, we investigated the designed ankyrin repeat protein (DARPin) Ec1 fused to a truncated variant of Pseudomonas exotoxin A with reduced immunogenicity and low general toxicity (LoPE). Ec1-LoPE was radiolabeled, evaluated in ovarian cancer cells in vitro and its biodistribution and tumor-targeting properties were studied in vivo. The therapeutic efficacy of Ec1-LoPE alone and in combination with trastuzumab was studied in mice bearing EpCAM- and HER2-expressing SKOV3 xenografts. SPECT/CT imaging enabled visualization of EpCAM and HER2 expression in the tumors. Co-treatment using Ec1-LoPE and trastuzumab was more effective at reducing tumor growth and prolonged the median survival of mice compared with mice in the control and monotherapy groups. Repeated administration of Ec1-LoPE was well tolerated without signs of hepatic or kidney toxicity. Co-treatment with trastuzumab and Ec1-LoPE might be a potential therapeutic strategy for HER2- and EpCAM-positive OC.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Shourong Wang ◽  
Zixiang Wang ◽  
Jieyin Li ◽  
Junchao Qin ◽  
Jianping Song ◽  
...  

AbstractAberrant expression of splicing factors was found to promote tumorigenesis and the development of human malignant tumors. Nevertheless, the underlying mechanisms and functional relevance remain elusive. We here show that USP39, a component of the spliceosome, is frequently overexpressed in high-grade serous ovarian carcinoma (HGSOC) and that an elevated level of USP39 is associated with a poor prognosis. USP39 promotes proliferation/invasion in vitro and tumor growth in vivo. Importantly, USP39 was transcriptionally activated by the oncogene protein c-MYC in ovarian cancer cells. We further demonstrated that USP39 colocalizes with spliceosome components in nuclear speckles. Transcriptomic analysis revealed that USP39 deletion led to globally impaired splicing that is characterized by skipped exons and overrepresentation of introns and intergenic regions. Furthermore, RNA immunoprecipitation sequencing showed that USP39 preferentially binds to exon-intron regions near 5′ and 3′ splicing sites. In particular, USP39 facilitates efficient splicing of HMGA2 and thereby increases the malignancy of ovarian cancer cells. Taken together, our results indicate that USP39 functions as an oncogenic splicing factor in ovarian cancer and represents a potential target for ovarian cancer therapy.


2019 ◽  
Vol 8 (11) ◽  
pp. e1649971 ◽  
Author(s):  
Noémie Joalland ◽  
Laura Lafrance ◽  
Thibauld Oullier ◽  
Séverine Marionneau-Lambot ◽  
Delphine Loussouarn ◽  
...  

2015 ◽  
Vol 96 (1) ◽  
pp. 37-48 ◽  
Author(s):  
Yanyan Ma ◽  
Zengtao Wei ◽  
Robert C Bast ◽  
Zhanying Wang ◽  
Yan Li ◽  
...  

2013 ◽  
Vol 781-784 ◽  
pp. 1152-1155
Author(s):  
Tang Li ◽  
Li Yu

The invasion behavior of tumor cells is important in the metastasis process of ovarian cancer cells. In this study we investigated the effects of Genistein on invasion inhibition in ovarian carcinoma cell line SKOV3 in vivo and in vitro. The abilities of the Genistein-treated SKOV3 cells to invade through reconstitute matrigel in transwell chambers were investigated in vitro and the invasion effect in vivo was determined by using the xenograft models of SKOV3 in nude mice. The ability of the 20μmol/L Genistein-treated cells to invade the reconstitute basement membrane was decreased significantly at 72h. This inhibition was dose-dependent. 40μmol/L Genistein had the strongest effect. The in vivo result suggested that the grade of invasion in control SKOV3 cells was time-dependent and Genistein-treated group could apparently inhibit the progress of invasion, localizing the tumor in invasion Grade 0 or Grade I and decreasing the proportion of Grade II, III and IV. The results suggested that Genistein possessed inhibitory effect on invasion in human ovarian carcinoma cell lines SKOV3 in vivo and in vitro.


Tumor Biology ◽  
2017 ◽  
Vol 39 (5) ◽  
pp. 101042831770550 ◽  
Author(s):  
Yi Li ◽  
Ming Xiao ◽  
Fangchun Guo

SOX6 plays important roles in cell proliferation, differentiation, and cell fate determination. It has been confirmed that SOX6 is a tumor suppressor and downregulated in various cancers, including esophageal squamous cell carcinoma, hepatocellular carcinoma, and chronic myeloid leukemia. Netrin-1 is highly expressed in various human cancers and acts as an anti-apoptotic and proangiogenic factor to drive tumorigenesis. The role of SOX6 and netrin-1 in regulating the growth of ovarian tumor cells still remains unclear. Real-time polymerase chain reaction and western blot were used to determine the SOX6 messenger RNA and protein levels, respectively, in ovarian cancer cells and tumor tissues. Stable transfection of SOX6 was conducted to overexpress SOX6 in PA-1 and SW626 cells. Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Invasion of ovarian cancer cells and migration of human umbilical vein endothelial cells were confirmed by Transwell assays. To overexpress netrin-1, ovarian cancer cells with SOX6 restoration was transduced with netrin-1 lentiviral particles. PA-1 xenografts in a nude mice model were used to conduct in vivo evaluation of the role of SOX6 and its relationship with netrin-1 in tumor growth and angiogenesis. In this study, we found significantly reduced SOX6 levels in PA-1, SW626, SK-OV-3, and CaoV-3 ovarian cancer cell lines and human tumor tissues in comparison with normal human ovarian epithelial cells or matched non-tumor tissues. SOX6 overexpression by stable transfection dramatically inhibited proliferation and invasion of PA-1 and SW626 cells. Also, conditioned medium from PA-1 and SW626 cells with SOX6 restoration exhibited reduced ability to induce human umbilical vein endothelial cells migration and tube formation compared with conditioned medium from the cells with transfection control. Furthermore, an inverse relationship between SOX6 and netrin-1 expression was observed in PA-1 and SW626 cells. Overexpression of netrin-1 in ovarian cancer cells with forced SOX6 expression remarkably abrogated the inhibitory effect of SOX6 on proliferation, invasion of the cells, and tumor xenograft growth and vascularity in vivo. Human umbilical vein endothelial cell migration and tube formation were enhanced in the conditioned medium from the ovarian cancer cells transduced with netrin-1 lentivirus particles. Our observations revealed that SOX6 is a tumor suppressor in ovarian cancer cells, and SOX6 exerts an inhibitory effect on the proliferation, invasion, and tumor cell-induced angiogenesis of ovarian cancer cells, whereas nerin-1 plays an opposite role and its expression is inversely correlated with SOX6. Moreover, our findings suggest a new role of SOX6 and netrin-1 for understanding the progression of ovarian cancer and have the potential for the development of new diagnosis and treatment strategies for ovarian cancer.


Sign in / Sign up

Export Citation Format

Share Document