scholarly journals Systemically Administered Homing Peptide Targets Dystrophic Lesions and Delivers Transforming Growth Factor-β (TGFβ) Inhibitor to Attenuate Murine Muscular Dystrophy Pathology

Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1506
Author(s):  
Aqsa Iqbal ◽  
Ulrike May ◽  
Stuart N. Prince ◽  
Tero A.H. Järvinen ◽  
Ahlke Heydemann

Muscular dystrophy is a progressively worsening and lethal disease, where accumulation of functionality-impairing fibrosis plays a key pathogenic role. Transforming growth factor-β1 (TGFβ1) is a central signaling molecule in the development of fibrosis in muscular dystrophic humans and mice. Inhibition of TGFβ1 has proven beneficial in mouse models of muscular dystrophy, but the global strategies of TGFβ1 inhibition produce significant detrimental side effects. Here, we investigated whether murine muscular dystrophy lesion-specific inhibition of TGFβ1 signaling by the targeted delivery of therapeutic decorin (a natural TGFβ inhibitor) by a vascular homing peptide CAR (CARSKNKDC) would reduce skeletal muscle fibrosis and pathology and increase functional characteristics of skeletal muscle. We demonstrate that CAR peptide homes to dystrophic lesions with specificity in two muscular dystrophy models. Recombinant fusion protein consisting of CAR peptide and decorin homes selectively to sites of skeletal muscle damage in mdxDBA2/J and gamma-sarcoglycan deficient DBA2/J mice. This targeted delivery reduced TGFβ1 signaling as demonstrated by reduced nuclear pSMAD staining. Three weeks of targeted decorin treatment decreased both membrane permeability and fibrosis and improved skeletal muscle function in comparison to control treatments in the mdxD2 mice. These results show that selective delivery of decorin to the sites of skeletal muscle damage attenuates the progression of murine muscular dystrophy.

2008 ◽  
Vol 104 (3) ◽  
pp. 579-587 ◽  
Author(s):  
Helen D. Kollias ◽  
John C. McDermott

The superfamily of transforming growth factor-β (TGF-β) cytokines has been shown to have profound effects on cellular proliferation, differentiation, and growth. Recently, there have been major advances in our understanding of the signaling pathway(s) conveying TGF-β signals to the nucleus to ultimately control gene expression. One tissue that is potently influenced by TGF-β superfamily signaling is skeletal muscle. Skeletal muscle ontogeny and postnatal physiology have proven to be exquisitely sensitive to the TGF-β superfamily cytokine milieu in various animal systems from mice to humans. Recently, major strides have been made in understanding the role of TGF-β and its closely related family member, myostatin, in these processes. In this overview, we will review recent advances in our understanding of the TGF-β and myostatin signaling pathways and, in particular, focus on the implications of this signaling pathway for skeletal muscle development, physiology, and pathology.


2021 ◽  
Vol 118 (33) ◽  
pp. e2111401118
Author(s):  
Yewei Liu ◽  
Adam Lehar ◽  
Renata Rydzik ◽  
Harshpreet Chandok ◽  
Yun-Sil Lee ◽  
...  

Skeletal muscle and bone homeostasis are regulated by members of the myostatin/GDF-11/activin branch of the transforming growth factor-β superfamily, which share many regulatory components, including inhibitory extracellular binding proteins and receptors that mediate signaling. Here, we present the results of genetic studies demonstrating a critical role for the binding protein follistatin (FST) in regulating both skeletal muscle and bone. Using an allelic series corresponding to varying expression levels of endogenous Fst, we show that FST acts in an exquisitely dose-dependent manner to regulate both muscle mass and bone density. Moreover, by employing a genetic strategy to target Fst expression only in the posterior (caudal) region of the animal, we show that the effects of Fst loss are mostly restricted to the posterior region, implying that locally produced FST plays a much more important role than circulating FST with respect to regulation of muscle and bone. Finally, we show that targeting receptors for these ligands specifically in osteoblasts leads to dramatic increases in bone mass, with trabecular bone volume fraction being increased by 12- to 13-fold and bone mineral density being increased by 8- to 9-fold in humeri, femurs, and lumbar vertebrae. These findings demonstrate that bone, like muscle, has an enormous inherent capacity for growth that is normally kept in check by this signaling system and suggest that the extent to which this regulatory mechanism may be used throughout the body to regulate tissue mass may be more significant than previously appreciated.


2005 ◽  
Vol 33 (6) ◽  
pp. 1513-1517 ◽  
Author(s):  
F.S. Walsh ◽  
A.J. Celeste

Myostatin, or GDF-8 (growth and differentiation factor-8), was first identified through sequence identity with members of the BMP (bone morphogenetic protein)/TGF-β (transforming growth factor-β) superfamily. The skeletal-muscle-specific expression pattern of myostatin suggested a role in muscle development. Mice with a targeted deletion of the myostatin gene exhibit a hypermuscular phenotype. In addition, inactivating mutations in the myostatin gene have been identified in ‘double muscled’ cattle breeds, such as the Belgian Blue and Piedmontese, as well as in a hypermuscular child. These findings define myostatin as a negative regulator of skeletal-muscle development. Myostatin binds with high affinity to the receptor serine threonine kinase ActRIIB (activin type IIB receptor), which initiates signalling through a smad2/3-dependent pathway. In an effort to validate myostatin as a therapeutic target in a post-embryonic setting, a neutralizing antibody was developed by screening for inhibition of myostatin binding to ActRIIB. Administration of this antimyostatin antibody to adult mice resulted in a significant increase in both muscle mass and functional strength. Importantly, similar results were obtained in a murine model of muscular dystrophy, the mdx mouse. Unlike the myostatin-deficient animals, which exhibit both muscle hypertrophy and hyperplasia, the antibody-treated mice demonstrate increased musculature through a hypertrophic mechanism. These results validate myostatin inhibition as a therapeutic approach to muscle wasting diseases such as muscular dystrophy, sarcopenic frailty of the elderly and amylotrophic lateral sclerosis.


2002 ◽  
Vol 283 (1) ◽  
pp. C135-C141 ◽  
Author(s):  
Carole Berry ◽  
Mark Thomas ◽  
Brett Langley ◽  
Mridula Sharma ◽  
Ravi Kambadur

Myostatin, a member of the transforming growth factor-β superfamily, is a secreted growth factor that is proteolytically processed to give COOH-terminal mature myostatin and NH2-terminal latency-associated peptide in myoblasts. Piedmontese cattle are a heavy-muscled breed that express a mutated form of myostatin in which cysteine (313) is substituted with tyrosine. Here we have characterized the biology of this mutated Piedmontese myostatin. Northern and Western analyses indicate that there is increased expression of myostatin mRNA and precursor myostatin protein in the skeletal muscle of Piedmontese cattle. In contrast, a decrease in mature myostatin was observed in Piedmontese skeletal muscle. However, there is no detectable change in the circulatory levels of mature myostatin in Piedmontese cattle. Myoblast proliferation assay performed with normal and Piedmontese myostatin indicated that mature wild-type myostatin protein inhibited the proliferation of C2C12 myoblasts. Piedmontese myostatin, by contrast, failed to inhibit myoblast proliferation. In addition, when added in molar excess, Piedmontese myostatin acted as a potent “competitive inhibitor” molecule. These results indicate that, in Piedmontese myostatin, substitution of cysteine with tyrosine results in the distortion of the “cystine knot” structure and a loss of biological activity of the myostatin. This mutation also appears to affect either processing or stability of mature myostatin without altering the secretion of myostatin.


2002 ◽  
Vol 94 (7-8) ◽  
pp. 535-543 ◽  
Author(s):  
Mayya Meriane ◽  
Sophie Charrasse ◽  
Franck Comunale ◽  
Cécile Gauthier-Rouvière

Sign in / Sign up

Export Citation Format

Share Document