Age and sex differences in human skeletal muscle fibrosis markers and transforming growth factor-β signaling

2017 ◽  
Vol 117 (7) ◽  
pp. 1463-1472 ◽  
Author(s):  
Lewan Parker ◽  
Marissa K. Caldow ◽  
Rani Watts ◽  
Pazit Levinger ◽  
David Cameron-Smith ◽  
...  
2019 ◽  
Vol 20 (10) ◽  
pp. 2446 ◽  
Author(s):  
Ahmed Ismaeel ◽  
Jeong-Su Kim ◽  
Jeffrey S. Kirk ◽  
Robert S. Smith ◽  
William T. Bohannon ◽  
...  

Transforming growth factor-beta (TGF-β) isoforms are cytokines involved in a variety of cellular processes, including myofiber repair and regulation of connective tissue formation. Activation of the TGF-β pathway contributes to pathologic fibrosis in most organs. Here, we have focused on examining the evidence demonstrating the involvement of TGF-β in the fibrosis of skeletal muscle particularly. The TGF-β pathway plays a role in different skeletal muscle myopathies, and TGF-β signaling is highly induced in these diseases. In this review, we discuss different molecular mechanisms of TGF-β-mediated skeletal muscle fibrosis and highlight different TGF-β-targeted treatments that target these relevant pathways.


2013 ◽  
Vol 305 (3) ◽  
pp. C241-C252 ◽  
Author(s):  
Richard L. Lieber ◽  
Samuel R. Ward

Skeletal muscle fibrosis can be a devastating clinical problem that arises from many causes, including primary skeletal muscle tissue diseases, as seen in the muscular dystrophies, or it can be secondary to events that include trauma to muscle or brain injury. The cellular source of activated fibroblasts (myofibroblasts) may include resident fibroblasts, adult muscle stem cells, or inflammatory or perivascular cells, depending on the model studied. Even though it is likely that there is no single source for all myofibroblasts, a common mechanism for the production of fibrosis is via the transforming growth factor-β/phosphorylated Smad3 pathway. This pathway and its downstream targets thus provide loci for antifibrotic therapies, as do methods for blocking the transdifferentiation of progenitors into activated fibroblasts. A structural model for the extracellular collagen network of skeletal muscle is needed so that measurements of collagen content, morphology, and gene expression can be related to mechanical properties. Approaches used to study fibrosis in tissues, such as lung, kidney, and liver, need to be applied to studies of skeletal muscle to identify ways to prevent or even cure the devastating maladies of skeletal muscle.


2008 ◽  
Vol 104 (3) ◽  
pp. 579-587 ◽  
Author(s):  
Helen D. Kollias ◽  
John C. McDermott

The superfamily of transforming growth factor-β (TGF-β) cytokines has been shown to have profound effects on cellular proliferation, differentiation, and growth. Recently, there have been major advances in our understanding of the signaling pathway(s) conveying TGF-β signals to the nucleus to ultimately control gene expression. One tissue that is potently influenced by TGF-β superfamily signaling is skeletal muscle. Skeletal muscle ontogeny and postnatal physiology have proven to be exquisitely sensitive to the TGF-β superfamily cytokine milieu in various animal systems from mice to humans. Recently, major strides have been made in understanding the role of TGF-β and its closely related family member, myostatin, in these processes. In this overview, we will review recent advances in our understanding of the TGF-β and myostatin signaling pathways and, in particular, focus on the implications of this signaling pathway for skeletal muscle development, physiology, and pathology.


2021 ◽  
Vol 118 (33) ◽  
pp. e2111401118
Author(s):  
Yewei Liu ◽  
Adam Lehar ◽  
Renata Rydzik ◽  
Harshpreet Chandok ◽  
Yun-Sil Lee ◽  
...  

Skeletal muscle and bone homeostasis are regulated by members of the myostatin/GDF-11/activin branch of the transforming growth factor-β superfamily, which share many regulatory components, including inhibitory extracellular binding proteins and receptors that mediate signaling. Here, we present the results of genetic studies demonstrating a critical role for the binding protein follistatin (FST) in regulating both skeletal muscle and bone. Using an allelic series corresponding to varying expression levels of endogenous Fst, we show that FST acts in an exquisitely dose-dependent manner to regulate both muscle mass and bone density. Moreover, by employing a genetic strategy to target Fst expression only in the posterior (caudal) region of the animal, we show that the effects of Fst loss are mostly restricted to the posterior region, implying that locally produced FST plays a much more important role than circulating FST with respect to regulation of muscle and bone. Finally, we show that targeting receptors for these ligands specifically in osteoblasts leads to dramatic increases in bone mass, with trabecular bone volume fraction being increased by 12- to 13-fold and bone mineral density being increased by 8- to 9-fold in humeri, femurs, and lumbar vertebrae. These findings demonstrate that bone, like muscle, has an enormous inherent capacity for growth that is normally kept in check by this signaling system and suggest that the extent to which this regulatory mechanism may be used throughout the body to regulate tissue mass may be more significant than previously appreciated.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Na Zhao ◽  
Bo Liu ◽  
Si-Wen Liu ◽  
Wei Zhang ◽  
Hua-Nan Li ◽  
...  

Complementary therapies, such as acupuncture and massage, had been previously reported to have therapeutic effects on skeletal muscle contusions. However, the recovery mechanisms on skeletal muscles after blunt trauma via the combination of electroacupuncture (EA) and massage therapy remain unclear. In the present study, a rat model of the skeletal muscle fibrosis following blunt trauma to rat skeletal muscle was established, and the potential molecular mechanisms of EA + massage therapy on the skeletal muscle fibrosis were investigated. The results suggested that EA + massage therapy could significantly decrease inflammatory cells infiltration and collagenous fiber content and ameliorate the disarrangement of sarcomeres within myofibrils compared to the model group. Further analysis revealed that EA + massage therapy could reduce the degree of fibrosis and increase the degree of myofibroblast apoptosis by downregulating the mRNA and protein expression of transforming growth factor- (TGF-) β1 and connective tissue growth factor (CTGF). Furthermore, the fibrosis of injured skeletal muscle was inhibited after treatment through the normalization of balance between matrix metalloproteinase- (MMP-) 1 and tissue inhibitor of matrix metalloproteinase (TIMP). These findings suggested that the combination of electroacupuncture and massage therapy could alleviate the fibrotic process by regulating TGF β1-CTGF-induced myofibroblast transdifferentiation and MMP-1/TIMP-1 balance for extracellular matrix production.


2010 ◽  
Vol 21 (6) ◽  
pp. 1111-1124 ◽  
Author(s):  
Francesca Cencetti ◽  
Caterina Bernacchioni ◽  
Paola Nincheri ◽  
Chiara Donati ◽  
Paola Bruni

The pleiotropic cytokine transforming growth factor (TGF)-β1 is a key player in the onset of skeletal muscle fibrosis, which hampers tissue repair. However, the molecular mechanisms implicated in TGFβ1-dependent transdifferentiation of myoblasts into myofibroblasts are presently unknown. Here, we show that TGFβ1 up-regulates sphingosine kinase (SK)-1 in C2C12 myoblasts in a Smad-dependent manner, and concomitantly modifies the expression of sphingosine 1-phosphate (S1P) receptors (S1PRs). Notably, pharmacological or short interfering RNA-mediated inhibition of SK1 prevented the induction of fibrotic markers by TGFβ1. Moreover, inhibition of S1P3, which became the highest expressed S1PR after TGFβ1 challenge, strongly attenuated the profibrotic response to TGFβ1. Furthermore, downstream of S1P3, Rho/Rho kinase signaling was found critically implicated in the profibrotic action of TGFβ1. Importantly, we demonstrate that SK/S1P axis, known to play a key role in myogenesis via S1P2, consequently to TGFβ1-dependent S1PR pattern remodeling, becomes responsible for transmitting a profibrotic, antidifferentiating action. This study provides new compelling information on the mechanism by which TGFβ1 gives rise to fibrosis in skeletal muscle, opening new perspectives for its pharmacological treatment. Moreover, it highlights the pleiotropic role of SK/S1P axis in skeletal myoblasts that, depending on the expressed S1PR pattern, seems capable of eliciting multiple, even contrasting biological responses.


Sign in / Sign up

Export Citation Format

Share Document