scholarly journals Miscibility and Solubility of Caffeine and Theophylline in Hydroxypropyl Methylcellulose

Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1836
Author(s):  
Edyta Leyk ◽  
Marek Wesolowski

As amorphization may improve the solubility and bioavailability of a drug substance, the aim of this work was to assess to what extent the crystallinity of caffeine (CAF) and theophylline (TF) can be reduced by homogenization with a polymeric excipient. To realize this purpose, the physical mixtures of both methylxanthines with hydroxypropyl methylcellulose (HPMC) were examined using differential scanning calorimetry (DSC), hot-stage microscopy (HSM), Fourier-transform infrared (FTIR) and Raman spectroscopy. Moreover, phase diagrams for the physical mixtures were calculated using theoretical data. Results of DSC experiments suggested that both CAF and TF underwent amorphization, which indicated proportional loss of crystallinity for methylxanthines in the mixtures with HPMC. Additionally, HSM revealed that no other crystalline or amorphous phases were created other than those observed for CAF and TF. FTIR and Raman spectra displayed all the bands characteristic for methylxanthines in mixtures with HPMC, thereby excluding changes in their chemical structures. However, changes to the intensity of the bands created by hydrogen bonds imply the formation of hydrogen bonding in the carbonyl group of methylxanthines and the methyl polymer group. This is consistent with data obtained using principal component analysis. The findings of these studies revealed the quantities of methylxanthines which may be dissolved in the polymer at a given temperature and the composition at which methylxanthines and polymer are sufficiently miscible to form a solid solution.

Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1958
Author(s):  
Jolanta Tomaszewska-Gras ◽  
Mahbuba Islam ◽  
Liliana Grzeca ◽  
Anna Kaczmarek ◽  
Emilia Fornal

The aim of this study was to describe the thermal properties of selected cultivars of flaxseed oil by the use of the differential scanning calorimetry (DSC) technique. The crystallization and melting profiles were analyzed depending on different scanning rates (1, 2, 5 °C/min) as well as oxidative induction time (OIT) isothermally at 120 °C and 140 °C, and oxidation onset temperatures (Ton) at 2 and 5 °C/min were measured. The crystallization was manifested as a single peak, differing for a cooling rate of 1 and 2 °C/min. The melting curves were more complex with differences among the cultivars for a heating rate of 1 and 2 °C/min, while for 5 °C/min, the profiles did not differ, which could be utilized in analytics for profiling in order to assess the authenticity of the flaxseed oil. Moreover, it was observed that flaxseed oil was highly susceptible to thermal oxidation, and its stability decreased with increasing temperature and decreasing heating rate. Significant negative linear correlations were found between unsaturated fatty acid content (C18:2, C18:3 n-3) and DSC parameters (OIT, Ton). Principal component analysis (PCA) also established a strong correlation between total oxidation value (TOTOX), peroxide value (PV) and all DSC parameters of thermo-oxidative stability.


2014 ◽  
Vol 1061-1062 ◽  
pp. 35-38
Author(s):  
Yun Long Ai ◽  
Xiao Rui Shen ◽  
Wei Hua Chen ◽  
Yao Hui Xie

NCu30-4-2-1 alloy was handled by solid solution at 950°Cfor 2h and then taking aging treatment at different temperatures and holding time. The microstructural evolution of NCu30-4-2-1 alloy in the process of aging treatment was investigated by metallographic microscope, X-ray diffractometer and differential scanning calorimetry. The results show that the phases of as-cast NCu30-4-2-1 alloy is composed by dendritic α-Ni-based solid solution and β-Ni3Si. After solid solution and aging treatment, the block distribution β-Ni3Si dissolves and many small granular dispersed distribution β'-Ni3Si precipitate out. With the increase of aging temperature and holding time, metastable β' tends to transform into stable β-Ni3Si. The precipitation sequence of aged NCu30-4-2-1alloy is supersaturated solid solution of α-Ni, GP zone, β'-Ni3Si and β-Ni3Si.


2019 ◽  
Vol 61 (4) ◽  
pp. 660
Author(s):  
Л.Т. Денисова ◽  
Л.А. Иртюго ◽  
В.В. Белецкий ◽  
Н.В. Белоусова ◽  
В.М. Денисов

AbstractEr_2Ge_2O_7–Er_2Sn_2O_7 solid solutions have been obtained using solid-state synthesis by burning the stoichiometric mixtures of the initial oxides in air in the temperature range of 1273–1473 K. The effects of temperature and solid solution composition on the specific heat have been examined by differential scanning calorimetry. The Er_2Ge_2O_7 thermodynamic functions have been calculated.


2001 ◽  
Vol 16 (9) ◽  
pp. 2459-2462 ◽  
Author(s):  
K. W. Liu ◽  
F. Mücklich ◽  
R. Birringer

No abrupt reaction was observed during mechanical alloying (MA) of Ru and Al powder mixtures with an eutectic composition (Ru70Al30). As-milled powders constitute mainly a Ru(Al) solid solution and/or mixture (matrix), and a very small quantity of RuAl. The complete reaction between Ru and Al during MA was speculated to be hampered by excess Ru in Ru70Al30. No exothermic heat release was detected in differential scanning calorimetry for as-milled powders. Precipitation of RuAl from as-milled Ru(Al) matrix was observed after annealing at various temperatures. The phase fraction of Ru and RuAl reaches an approximately equilibrium value after annealing at 1173 K.


1997 ◽  
Vol 12 (5) ◽  
pp. 1172-1175 ◽  
Author(s):  
Taiping Lou ◽  
Guojiang Fan ◽  
Bingzhe Ding ◽  
Zhuangqi Hu

The stoichiometric intermetallic compound NbSi2 has been synthesized by mechanical alloying (MA) elemental Nb and Si powders. The alloying process has been investigated by means of x-ray diffraction (XRD) and differential scanning calorimetry (DSC). It was found that the formation of the Nb2Si intermetallic compound occurs abruptly after 65 min of milling without any interruptions during the alloying process. However, short interruptions at a 5 min interval during ball milling result in a gradual reaction for the formation of the NbSi2 compound as well as a new metastable bcc structured solid solution. We conclude that the temperature rise during mechanical alloying plays an important role in initiating the abrupt reaction after an incubation milling time.


Author(s):  
Hari Krishna Bisoyi ◽  
H T Srinivasa ◽  
Sandeep Kumar

Here we present the design and synthesis of novel banana-discotic dimers and banana-bridged discotic dimers. The chemical structures have been characterized by spectral techniques and elemental analysis. The thermal behaviors of the compounds have been investigated by polarizing optical microscopy and differential scanning calorimetry. None of these synthesized compounds exhibit any liquid crystalline property probably because of the incompatibility of the bent-core with the discotic core.


2020 ◽  
Vol 28 (2) ◽  
pp. 83-86
Author(s):  
A. O. Diachenko ◽  
D. V. Volynets ◽  
M. P. Trubitsyn ◽  
M. D. Volnianskii

The glasses of lithium-sodium tetragermanate LiNaGe4O9 and solid solution Li1.8Na0.2Ge4O9 were prepared by quenching the melt and crystallized on heating. The glass crystallization was controlled by differential scanning calorimetry and thermal gravimetric analysis. The DSC measurements performed in the range 300–1200 K show that the crystallization of the glasses occurs through a single stage. There are no anomalies on TGA dependences. It is assumed that LiNaGe4O9 and Li 1.8Na0.2Ge4O9 glasses crystallize in accordance with a polymorphic mechanism.


Sign in / Sign up

Export Citation Format

Share Document