scholarly journals Elovanoids Counteract Inflammatory Signaling, Autophagy, Endoplasmic Reticulum Stress, and Senescence Gene Programming in Human Nasal Epithelial Cells Exposed to Allergens

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 113
Author(s):  
Alfredo Resano ◽  
Surjyadipta Bhattacharjee ◽  
Miguel Barajas ◽  
Khanh V. Do ◽  
Roberto Aguado-Jiménez ◽  
...  

To contribute to further understanding the cellular and molecular complexities of inflammatory-immune responses in allergic disorders, we have tested the pro-homeostatic elovanoids (ELV) in human nasal epithelial cells (HNEpC) in culture challenged by several allergens. ELV are novel bioactive lipid mediators synthesized from the omega-3 very-long-chain polyunsaturated fatty acids (VLC-PUFA,n-3). We ask if: (a) several critical signaling events that sustain the integrity of the human nasal epithelium and other organ barriers are perturbed by house dust mites (HDM) and other allergens, and (b) if ELV would participate in beneficially modulating these events. HDM is a prevalent indoor allergen that frequently causes allergic respiratory diseases, including allergic rhinitis and allergic asthma, in HDM-sensitized individuals. Our study used HNEpC as an in vitro model to study the effects of ELV in counteracting HDM sensitization resulting in inflammation, endoplasmic reticulum (ER) stress, autophagy, and senescence. HNEpC were challenged with the following allergy inducers: LPS, poly(I:C), or Dermatophagoides farinae plus Dermatophagoides pteronyssinus extract (HDM) (30 µg/mL), with either phosphate-buffered saline (PBS) (vehicle) or ELVN-34 (500 nM). Results show that ELVN-34 promotes cell viability and reduces cytotoxicity upon HDM sensitization of HNEpC. This lipid mediator remarkably reduces the abundance of pro-inflammatory cytokines and chemokines IL-1β, IL-8, VEGF, IL-6, CXCL1, CCL2, and cell adhesion molecule ICAM1 and restores the levels of the pleiotropic anti-inflammatory IL-10. ELVN-34 also lessens the expression of senescence gene programming as well as of gene transcription engaged in pro-inflammatory responses. Our data also uncovered that HDM triggered the expression of key genes that drive autophagy, unfolded protein response (UPR), and matrix metalloproteinases (MMP). ELVN-34 has been shown to counteract these effects effectively. Together, our data reveal a novel, pro-homeostatic, cell-protective lipid-signaling mechanism in HNEpC as potential therapeutic targets for allergies.

Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 282
Author(s):  
Finny S. Varghese ◽  
Esther van Woudenbergh ◽  
Gijs J. Overheul ◽  
Marc J. Eleveld ◽  
Lisa Kurver ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged as a new human pathogen in late 2019 and it has infected over 100 million people in less than a year. There is a clear need for effective antiviral drugs to complement current preventive measures, including vaccines. In this study, we demonstrate that berberine and obatoclax, two broad-spectrum antiviral compounds, are effective against multiple isolates of SARS-CoV-2. Berberine, a plant-derived alkaloid, inhibited SARS-CoV-2 at low micromolar concentrations and obatoclax, which was originally developed as an anti-apoptotic protein antagonist, was effective at sub-micromolar concentrations. Time-of-addition studies indicated that berberine acts on the late stage of the viral life cycle. In agreement, berberine mildly affected viral RNA synthesis, but it strongly reduced infectious viral titers, leading to an increase in the particle-to-pfu ratio. In contrast, obatoclax acted at the early stage of the infection, which is in line with its activity to neutralize the acidic environment in endosomes. We assessed infection of primary human nasal epithelial cells that were cultured on an air-liquid interface and found that SARS-CoV-2 infection induced and repressed expression of specific sets of cytokines and chemokines. Moreover, both obatoclax and berberine inhibited SARS-CoV-2 replication in these primary target cells. We propose berberine and obatoclax as potential antiviral drugs against SARS-CoV-2 that could be considered for further efficacy testing.


2019 ◽  
Vol 13 (1) ◽  
Author(s):  
Junhyoung Byun ◽  
Boa Song ◽  
Kyungwoo Lee ◽  
Byoungjae Kim ◽  
Hae Won Hwang ◽  
...  

Abstract Background Exposure to air particulate matter (PM) is associated with various diseases in the human respiratory system. To date, most in vitro studies showing cellular responses to PM have been performed in cell culture using a single cell type. There are few studies considering how multicellular networks communicate in a tissue microenvironment when responding to the presence of PM. Here, an in vitro three-dimensional (3D) respiratory mucosa-on-a-chip, composed of human nasal epithelial cells, fibroblasts, and endothelial cells, is used to recapitulate and better understand the effects of urban particulate matter (UPM) on human respiratory mucosa. Results We hypothesized that the first cells to contact with UPM, the nasal epithelial cells, would respond similar to the tissue microenvironment, and the 3D respiratory mucosa model would be a suitable platform to capture these events. First, whole transcriptome analysis revealed that UPM induced gene expression alterations in inflammatory and adhesion-related genes in human nasal epithelial cells. Next, we developed an in vitro 3D respiratory mucosa model composed of human nasal epithelial cells, fibroblasts, and endothelial cells and demonstrated that the model is structurally and functionally compatible with the respiratory mucosa. Finally, we used our model to expose human nasal epithelial cells to UPM, which led to a disruption in the integrity of the respiratory mucosa by decreasing the expression of zonula occludens-1 in both the epithelium and endothelium, while also reducing vascular endothelial cadherin expression in the endothelium. Conclusions We demonstrate the potential of the 3D respiratory mucosa model as a valuable tool for the simultaneous evaluation of multicellular responses caused by external stimuli in the human respiratory mucosa. We believe that the evaluation strategy proposed in the study will move us toward a better understanding of the detailed molecular mechanisms associated with pathological changes in the human respiratory system.


1998 ◽  
Vol 12 (4) ◽  
pp. 279-282 ◽  
Author(s):  
Yang-Gi Min ◽  
Chae-Seo Rhee ◽  
Sam-Hyun Kwon ◽  
Kang Soo Lee ◽  
Ja Bock Yun

Previous reports suggest that cytokines may be involved in proliferation of the epithelium. The aim of this study was to determine the effects of cytokines, IL-1β, TNF-α, and TGF-β on proliferation of human nasal epithelial cells (HNECs) in vitro. Primary cells were cultured from HNECs on collagen gel matrix. Subcultured HNECs were incubated in a medium with recombinant human (rh) cytokines, rhIL-1β, rhTNF-a, and rhTGF-β at different concentrations of 0.01 ng/mL, 0.1 ng/mL, 1 ng/mL, 10 ng/mL, and 100 ng/mL. After 2-day incubation with these cytokines, daily cell proliferation was measured by MTT assay for 6 days. While rhIL-1β inhibited proliferation of HNECs in concentration-dependent and time-dependent manners, rhTNF-a stimulated HNEC growth at concentrations ranging from 0.01 ng/mL to 10 ng/mL in concentration-dependent and time-dependent manner. In contrast, rhTGF-b inhibited HNEC growth irrespective of concentration and incubation time. This study suggests that IL-1β, TNF-α, and TGF-β may have an important role in the repair of the nasal mucosa by regulating proliferation of the nasal epithelium.


2014 ◽  
Vol 272 (2) ◽  
pp. 377-383 ◽  
Author(s):  
Richard Birk ◽  
C. Aderhold ◽  
J. Stern-Sträter ◽  
K. Hörmann ◽  
B. A. Stuck ◽  
...  

1989 ◽  
Vol 246 (5) ◽  
pp. 308-314 ◽  
Author(s):  
M. Jorissen ◽  
B. Schueren ◽  
H. Berghe ◽  
J. -J. Cassiman

1998 ◽  
Vol 15 (2) ◽  
pp. 286
Author(s):  
Yong Dae Kim ◽  
Si Youn Song ◽  
Myung Ki Min ◽  
Jang Su Suh ◽  
Kei Won Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document