scholarly journals 47.5 GHz Membrane-III-V-on-Si Directly Modulated Laser for Sub-pJ/bit 100-Gbps Transmission

Photonics ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 31
Author(s):  
Nikolaos-Panteleimon (Pandelis) Diamantopoulos ◽  
Suguru Yamaoka ◽  
Takuro Fujii ◽  
Hidetaka Nishi ◽  
Koji Takeda ◽  
...  

Near-future upgrades of intra data center networks and high-performance computing systems would require optical interconnects capable of operating at beyond 100 Gbps/lane. In order for this evolution to be achieved in a sustainable way, high-speed yet energy-efficient transceivers are in need. Towards this direction we have previously demonstrated directly-modulated lasers (DMLs) capable of operating at 50 Gbps/lane with sub-pJ/bit efficiencies based on our novel membrane-III-V-on-Si technology. However, there exists an inherent tradeoff between modulation speed and power consumption due to the carrier-photon dynamics in DMLs. In this work, we alleviate this tradeoff by introducing photon–photon resonance dynamics in our energy-efficient membrane DMLs-on-Si design and demonstrate a device with a maximum 3-dB bandwidth of 47.5 GHz. This denotes a bandwidth increase of more than 2x times compared to our previous membrane DMLs-on-Si. Moreover, the DML is capable of delivering 60-GBaud PAM-4 signals under Ethernet’s KP4-FEC threshold (net data rate of 113.42 Gbps) over 2-km of standard single-mode fiber transmission. DC energy-efficiencies of 0.17 pJ/bit at 25 °C and 0.34 pJ/bit at 50 °C have been achieved for the > 100-Gbps signals. Deploying such DMLs in an integrated multichannel transceiver should ensure a smooth evolution towards Terabit-class Ethernet links and on-board optics subsystems.

Acta Numerica ◽  
2012 ◽  
Vol 21 ◽  
pp. 379-474 ◽  
Author(s):  
J. J. Dongarra ◽  
A. J. van der Steen

This article describes the current state of the art of high-performance computing systems, and attempts to shed light on near-future developments that might prolong the steady growth in speed of such systems, which has been one of their most remarkable characteristics. We review the different ways devised to speed them up, both with regard to components and their architecture. In addition, we discuss the requirements for software that can take advantage of existing and future architectures.


2019 ◽  
Vol 29 (3) ◽  
pp. 33-40
Author(s):  
A. E. Ometov ◽  
A. A. Vinogradov ◽  
A. S. Vorobiev

The article describes the experiments carried out during the post-silicone verification of Elbrus-8CB microprocessor – one of the important stages of the verification process, which mostly determines the possibility of creating high-performance computing systems consisting of several microprocessors of this series. The interprocessor communication channels of the Elbrus-8CB microprocessor were investigated and some hypotheses were put forward about the reasons for their low operating speed. Experiments conducted to validate these hypotheses are made with intermediate conclusions based on their results. The built-in testing mechanism of CEI-6G and PCIe 2.0 physical levels was described alongside with its operating modes and testing algorithm. Several studies were carried out to ensure the correctness of the testing mechanism. This led to modifications of the initial testing method. The final conclusions about the reasons for the incorrect operation of interprocessor communications were made, and recommendations were given to improve the high-speed communications signals attenuation parameters and the level of their interference immunity. The relevance of this study for the production of modern high-performance computing systems can be traced not only in the growing interest of designers to this problem, but also in tightening of the requirements of the physical layers manufacturers.


2020 ◽  
pp. 112-116
Author(s):  
A.L. Reznik ◽  
A.A. Soloviev ◽  
A.V. Torgov

The paper discusses an approach to solving complex probabilistic combinatorial problems. The approach is based on the use of specialized software systems for analytical transformations for computing systems. One of the problems associated with the partition of the interval (which arises in the study of the reliability of reading discrete-point fields and digital images) is considered in the paper, and new previously unknown analytical formulas have been successfully obtained. The efficiency of the developed software systems is ensured by two factors: firstly, the development of high-speed specialized recursive-combinatorial algorithms; secondly, the software implementation on high-performance computing clusters using modern programming and development tools (such as C ++ and MPI). Examples of particular solutions to the described problem that are obtained with the help of constructed computer systems are presented. An effective approach to solving complex probabilistic combinatorial problems is demonstrated. For the proposed approach, a computer is not just a powerful "calculator", but is an effective assistant with a wide range of algorithms and programs for complex and branched analytical transformations.


Author(s):  
Apolinar Velarde Martinez

Increasingly complex algorithms for the modeling and resolution of different problems, which are currently facing humanity, has made it necessary the advent of new data processing requirements and the consequent implementation of high performance computing systems; but due to the high economic cost of this type of equipment and considering that an education institution cannot acquire, it is necessary to develop and implement computable architectures that are economical and scalable in their construction, such as heterogeneous distributed computing systems, constituted by several clustering of multicore processing elements with shared and distributed memory systems. This paper presents the analysis, design and implementation of a high-performance computing system called Liebres InTELigentes, whose purpose is the design and execution of intrinsically parallel algorithms, which require high amounts of storage and excessive processing times. The proposed computer system is constituted by conventional computing equipment (desktop computers, lap top equipment and servers), linked by a high-speed network. The main objective of this research is to build technology for the purposes of scientific and educational research.


2020 ◽  
Vol 2020 ◽  
pp. 1-19 ◽  
Author(s):  
Paweł Czarnul ◽  
Jerzy Proficz ◽  
Krzysztof Drypczewski

This paper provides a review of contemporary methodologies and APIs for parallel programming, with representative technologies selected in terms of target system type (shared memory, distributed, and hybrid), communication patterns (one-sided and two-sided), and programming abstraction level. We analyze representatives in terms of many aspects including programming model, languages, supported platforms, license, optimization goals, ease of programming, debugging, deployment, portability, level of parallelism, constructs enabling parallelism and synchronization, features introduced in recent versions indicating trends, support for hybridity in parallel execution, and disadvantages. Such detailed analysis has led us to the identification of trends in high-performance computing and of the challenges to be addressed in the near future. It can help to shape future versions of programming standards, select technologies best matching programmers’ needs, and avoid potential difficulties while using high-performance computing systems.


2021 ◽  
Vol 11 (9) ◽  
pp. 4015
Author(s):  
Peter Hellwig ◽  
Klaus Schricker ◽  
Jean Pierre Bergmann

High processing speeds enormously enlarge the number of possible fields of application for laser processes. For example, material removal for sheet cutting using multiple passes or precise mass corrections can be achieved by means of spatter formation. For a better understanding of spatter formation at processing speeds of several hundred meters per minute, characterizations of the processing zone are required. For this purpose, a 400 W single-mode fiber laser was used in this study to process stainless steel AISI 304 (1.4301/X5CrNi18-10) with speeds of up to 600 m/min. A setup was developed that enabled a lateral high-speed observation of the processing zone by means of a glass plate flanking. This approach allowed for the measurement of several dimensions, such as the penetration depth, spatter formation, and especially, the inclination angle of the absorption front. It was shown that the loss of mass started to significantly increase when the absorption front was inclined at about 60°. In combination with precise weighings, metallographic examinations, and further external process observations, these findings provided an illustration of four empirical process models for different processing speeds.


Sign in / Sign up

Export Citation Format

Share Document