scholarly journals Laser 3D Printing of Inorganic Free-Form Micro-Optics

Photonics ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 577
Author(s):  
Diana Gonzalez-Hernandez ◽  
Simonas Varapnickas ◽  
Greta Merkininkaitė ◽  
Arūnas Čiburys ◽  
Darius Gailevičius ◽  
...  

A pilot study on laser 3D printing of inorganic free-form micro-optics is experimentally validated. Ultrafast laser direct-write (LDW) nanolithography is employed for structuring hybrid organic-inorganic material SZ2080TM followed by high-temperature calcination post-processing. The combination allows the production of 3D architectures and the heat-treatment results in converting the material to inorganic substances. The produced miniature optical elements are characterized and their optical performance is demonstrated. Finally, the concept is validated for manufacturing compound optical components such as stacked lenses. This is an opening for new directions and applications of laser-made micro-optics under harsh conditions such as high intensity radiation, temperature, acidic environment, pressure variations, which include open space, astrophotonics, and remote sensing.

Author(s):  
Diana Laura Gonzalez Hernandez ◽  
Simonas Varapnickas ◽  
Greta Merkininkaite ◽  
Arunas Ciburys ◽  
Darius Gailevičius ◽  
...  

A pilot study on laser 3D printing of inorganic free-form micro-optics is experimentally validated. Ultrafast laser nanolithography is employed for structuring hybrid organic-inorganic material SZ2080TM followed by high-temperature calcination post-processing. The combination allows production of 3D architectures and the heat-treatment results in converting the material to inorganic substance. The produced miniature optical elements are characterized and their optical performance demonstrated. Finally, the concept is validated for manufacturing compound optical components such as stacked lenses. This is opening for new directions and applications of laser made microoptics under harsh conditions such as high intensity radiation, temperature, acidic environment, pressure variations, which include open space, astrophotonics, and remote sensing.


2020 ◽  
Author(s):  
George Flamourakis ◽  
Antonis Kordas ◽  
George Barmparis ◽  
Anthi Ranella ◽  
Maria Farsari

Multiphoton lithography allows the high resolution, free-form 3D printing of structures such as micro-optical elements and 3D scaffolds for Tissue Engineering. A major obstacle in its application in these fields is material and structure autofluorescence. Existing photoresists promise near zero fluorescent in expense of poor mechanical properties, and low printing efficiency. Sudan Black B is a molecular quencher used as a dye for biological studies and as means of decreasing the autofluorescence of polymers. In our study we report the use of Sudan Black B as both a photoinitiator and as a post-fabrication treatment step, using the zirconium silicate SZ2080TM for the development of a non-fluorescent composite. We use this material for the 3D printing of micro-optical elements, and meso-scale scaffolds for Mesenchymal Stem Cell cultures. Our results show the hybrid, made photosensitive with Sudan Black B, can be used for the fabrication of high resolution, highly transparent, autofluorescence-free microstructures.


2016 ◽  
Author(s):  
L. Kuna ◽  
C. Leiner ◽  
S. Ruttloff ◽  
W. Nemitz ◽  
F. Reil ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
pp. 016002 ◽  
Author(s):  
Ladislav Kuna ◽  
Claude Leiner ◽  
Wolfgang Nemitz ◽  
Frank Reil ◽  
Paul Hartmann ◽  
...  

2021 ◽  
pp. 002199832110022
Author(s):  
Ahmed Alhelal ◽  
Zaheeruddin Mohammed ◽  
Shaik Jeelani ◽  
Vijaya K Rangari

Semi-crystalline carbon biochar is derived from spent coffee grounds (SCG) by a controlled pyrolysis process at high temperature/pressure conditions. Obtained biochar is characterized using XRD, SEM, and TEM techniques. Biochar particles are in the micrometer range with nanostructured morphologies. The SCG biochar thus produced is used as reinforcement in epoxy resin to 3 D print samples using the direct-write (DW) method with 1 and 3 wt. % loadings. Rheology results show that the addition of biochar makes resin viscous, enabling it to be stable soon after print; however, it could also lead to clogging of resin in printer head. The printed samples are characterized for chemical, thermal and mechanical properties using FTIR, TGA, DMA and flexure tests. Storage modulus improved with 1 wt. % biochar addition up to 27.5% and flexural modulus and strength increased up to 55.55% and 43.30% respectively. However, with higher loading of 3 wt. % both viscoelastic and flexural properties of 3D printed samples drastically reduced thus undermining the feasibility of 3D printing biochar reinforced epoxies at higher loadings.


2010 ◽  
Vol 438 ◽  
pp. 65-72 ◽  
Author(s):  
Andreas Mehner ◽  
Ju An Dong ◽  
Timo Hoja ◽  
Torsten Prenzel ◽  
Yildirim Mutlugünes ◽  
...  

The demand for high precision optical elements as micro lens arrays for displays increases continually. Economic mass production of such optical elements is done by replication with high precision optical molds. A new approach for manufacturing such molds was realized by diamond machinable and wear resistant sol-gel coatings. Crack free silica based hybrid coatings from base catalyzed sols from tetraethylorthosilicate (TEOS: Si(OC2H5)4) and methyltriethoxysilane (MTES: Si(CH3)(OC2H5)3) precursors were deposited onto pre-machined steel molds by spin coating process followed by a heat treatment at temperatures up to 800°C. Crack-free multilayer coatings with a total thickness of up to 18 µm were achieved. Micro-machining of these coatings was accomplished by high precision fly cutting with diamond tools. Molds with micro-structured coatings were successfully tested for injection molding of PMMA optical components. The wear resistance of the coatings was successfully tested by injection molding of 1000 PMMA lenses. Hardness and elastic modulus of the coatings were measured by nano indentation. The chemical composition was measured by X-ray photo electron spectroscopy (XPS) as a function of the sol-gel processing parameters.


2006 ◽  
Vol 29 (1) ◽  
pp. 184-189
Author(s):  
Chengping Zhang ◽  
R. Bartholomew ◽  
P.C. Karulkar

Sign in / Sign up

Export Citation Format

Share Document