scholarly journals A low-autofluorescence, transparent resin for multiphoton 3D printing

2020 ◽  
Author(s):  
George Flamourakis ◽  
Antonis Kordas ◽  
George Barmparis ◽  
Anthi Ranella ◽  
Maria Farsari

Multiphoton lithography allows the high resolution, free-form 3D printing of structures such as micro-optical elements and 3D scaffolds for Tissue Engineering. A major obstacle in its application in these fields is material and structure autofluorescence. Existing photoresists promise near zero fluorescent in expense of poor mechanical properties, and low printing efficiency. Sudan Black B is a molecular quencher used as a dye for biological studies and as means of decreasing the autofluorescence of polymers. In our study we report the use of Sudan Black B as both a photoinitiator and as a post-fabrication treatment step, using the zirconium silicate SZ2080TM for the development of a non-fluorescent composite. We use this material for the 3D printing of micro-optical elements, and meso-scale scaffolds for Mesenchymal Stem Cell cultures. Our results show the hybrid, made photosensitive with Sudan Black B, can be used for the fabrication of high resolution, highly transparent, autofluorescence-free microstructures.

Author(s):  
Diana Laura Gonzalez Hernandez ◽  
Simonas Varapnickas ◽  
Greta Merkininkaite ◽  
Arunas Ciburys ◽  
Darius Gailevičius ◽  
...  

A pilot study on laser 3D printing of inorganic free-form micro-optics is experimentally validated. Ultrafast laser nanolithography is employed for structuring hybrid organic-inorganic material SZ2080TM followed by high-temperature calcination post-processing. The combination allows production of 3D architectures and the heat-treatment results in converting the material to inorganic substance. The produced miniature optical elements are characterized and their optical performance demonstrated. Finally, the concept is validated for manufacturing compound optical components such as stacked lenses. This is opening for new directions and applications of laser made microoptics under harsh conditions such as high intensity radiation, temperature, acidic environment, pressure variations, which include open space, astrophotonics, and remote sensing.


Photonics ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 577
Author(s):  
Diana Gonzalez-Hernandez ◽  
Simonas Varapnickas ◽  
Greta Merkininkaitė ◽  
Arūnas Čiburys ◽  
Darius Gailevičius ◽  
...  

A pilot study on laser 3D printing of inorganic free-form micro-optics is experimentally validated. Ultrafast laser direct-write (LDW) nanolithography is employed for structuring hybrid organic-inorganic material SZ2080TM followed by high-temperature calcination post-processing. The combination allows the production of 3D architectures and the heat-treatment results in converting the material to inorganic substances. The produced miniature optical elements are characterized and their optical performance is demonstrated. Finally, the concept is validated for manufacturing compound optical components such as stacked lenses. This is an opening for new directions and applications of laser-made micro-optics under harsh conditions such as high intensity radiation, temperature, acidic environment, pressure variations, which include open space, astrophotonics, and remote sensing.


Nature ◽  
2020 ◽  
Vol 588 (7839) ◽  
pp. 594-595
Author(s):  
Cameron Darkes-Burkey ◽  
Robert F. Shepherd
Keyword(s):  

2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
P. Goswami ◽  
J. Baruah

Concentrations of atmospheric pollutants are strongly influenced by meteorological parameters like rainfall, relative humidity and wind advection. Thus accurate specifications of the meteorological fields, and their effects on pollutants, are critical requirements for successful modelling of air pollution. In terms of their applications, pollutant concentration models can be used in different ways; in one, short term high resolution forecasts are generated to predict and manage urban pollution. Another application of dynamical pollution models is to generate outlook for a given airbasin, such as over a large city. An important question is application-specific model configuration for the meteorological simulations. While a meso-scale model provides a high-resolution configuration, a global model allows better simulation of large-sale fields through its global environment. Our objective is to comparatively evaluate a meso-scale atmospheric model (MM5) and atmospheric global circulation model (AGCM) in simulating different species of pollutants over different airbasins. In this study we consider four locations: ITO (Central Delhi), Sirifort (South Delhi), Bandra (Mumbai) and Karve Road (Pune). The results show that both the model configurations provide comparable skills in simulation of monthly and annual loads, although the skill of the meso-scale model is somewhat higher, especially at shorter time scales.


2017 ◽  
Author(s):  
Henry Oliver T. Ware ◽  
Adam C. Farsheed ◽  
Robert van Lith ◽  
Evan Baker ◽  
Guillermo Ameer ◽  
...  

Lab on a Chip ◽  
2021 ◽  
Author(s):  
Reverson Fernandes Quero ◽  
Gessica Domingos Silveira ◽  
Jose Alberto Fracassi da Silva ◽  
Dosil Pereira de Jesus

The fabrication of microfluidic devices through Fused Deposition Modeling (FDM) 3D printing has faced several challenges, mainly regarding obtaining microchannels with suitable transparency and sizes. Thus, the use of this...


2021 ◽  
Author(s):  
Eva Chatzinikolaou ◽  
Kleoniki Keklikoglou

Micro-computed tomography (micro-CT) is a high-resolution 3D-imaging technique which is now increasingly applied in biological studies focusing on taxonomy and functional morphology. The creation of virtual representations of specimens can increase availability of otherwise underexploited and inaccessible samples. This protocol aims to standardise micro-CT scanning procedures for embryos and juveniles of the marine gastropod species Hexaplex trunculus.


2014 ◽  
Vol 70 (12) ◽  
pp. 3310-3319 ◽  
Author(s):  
Tatyana N. Safonova ◽  
Sergey N. Mikhailov ◽  
Vladimir P. Veiko ◽  
Nadezhda N. Mordkovich ◽  
Valentin A. Manuvera ◽  
...  

Uridine phosphorylase (UP; EC 2.4.2.3), a key enzyme in the pyrimidine-salvage pathway, catalyzes the reversible phosphorolysis of uridine to uracil and ribose 1-phosphate. Expression of UP fromShewanella oneidensisMR-1 (SoUP) was performed inEscherichia coli. The high-resolution X-ray structure of SoUP was solved in the free form and in complex with uridine. A crystal of SoUP in the free form was grown under microgravity and diffracted to ultrahigh resolution. Both forms of SoUP contained sulfate instead of phosphate in the active site owing to the presence of ammonium sulfate in the crystallization solution. The latter can be considered as a good mimic of phosphate. In the complex, uridine adopts a high-synconformation with a nearly planar ribose ring and is present only in one subunit of the hexamer. A comparison of the structures of SoUP in the free form and in complex with the natural substrate uridine showed that the subunits of the hexamer are not identical, with the active sites having either an open or a closed conformation. In the monomers with the closed conformation, the active sites in which uridine is absent contain a glycerol molecule mimicking the ribose moiety of uridine.


2015 ◽  
Vol 6 (2) ◽  
pp. 63-86
Author(s):  
Dipesh Dhital ◽  
Yvonne Ziegler

Additive Manufacturing also known as 3D Printing is a process whereby a real object of virtually any shape can be created layer by layer from a Computer Aided Design (CAD) model. As opposed to the conventional Subtractive Manufacturing that uses cutting, drilling, milling, welding etc., 3D printing is a free-form fabrication process and does not require any of these processes. The 3D printed parts are lighter, require short lead times, less material and reduce environmental footprint of the manufacturing process; and is thus beneficial to the aerospace industry that pursues improvement in aircraft efficiency, fuel saving and reduction in air pollution. Additionally, 3D printing technology allows for creating geometries that would be impossible to make using moulds and the Subtractive Manufacturing of drilling/milling. 3D printing technology also has the potential to re-localize manufacturing as it allows for the production of products at the particular location, as and when required; and eliminates the need for shipping and warehousing of final products.


Sign in / Sign up

Export Citation Format

Share Document