3D printing of spent coffee ground derived biochar reinforced epoxy composites

2021 ◽  
pp. 002199832110022
Author(s):  
Ahmed Alhelal ◽  
Zaheeruddin Mohammed ◽  
Shaik Jeelani ◽  
Vijaya K Rangari

Semi-crystalline carbon biochar is derived from spent coffee grounds (SCG) by a controlled pyrolysis process at high temperature/pressure conditions. Obtained biochar is characterized using XRD, SEM, and TEM techniques. Biochar particles are in the micrometer range with nanostructured morphologies. The SCG biochar thus produced is used as reinforcement in epoxy resin to 3 D print samples using the direct-write (DW) method with 1 and 3 wt. % loadings. Rheology results show that the addition of biochar makes resin viscous, enabling it to be stable soon after print; however, it could also lead to clogging of resin in printer head. The printed samples are characterized for chemical, thermal and mechanical properties using FTIR, TGA, DMA and flexure tests. Storage modulus improved with 1 wt. % biochar addition up to 27.5% and flexural modulus and strength increased up to 55.55% and 43.30% respectively. However, with higher loading of 3 wt. % both viscoelastic and flexural properties of 3D printed samples drastically reduced thus undermining the feasibility of 3D printing biochar reinforced epoxies at higher loadings.

Author(s):  
Noor Ariefandie Febrianto

Spent coffee ground is a primary by-product obtained during soluble coffee processing and potential to be used as a high value product due to its proteincontent. The quite popular effort to utilize protein-contained material is to process it to hydrolysate which also possess antioxidant activity. This research was aimed to study the possibility of protein and antioxidative compound from spent coffee ground by means of enzymatic hydrolysis using crude papain enzymes. Crude papain was used in different concentration ranged from 2, 4 and 6% to incubate the spent coffee grounds for 2, 3, and 4 hours and then analyzed for its protein content and its antioxidant activity. Response surface methodology was employed to study the tendency of the effect of incubation time and enzymesconcentration towards hydrolysis results. The result showed that the use of crude papain was effective to liberate the protein and antioxidant compound from the spent coffee ground with its optimum condition utilized 6% of enzyme and 2 hours incubation time. At mentioned condition, it could extract up to 67.4% ofthe protein of the spent coffee ground and its hydrolysate possessed relatively high antioxidant activity.  


2017 ◽  
Vol 89 (1) ◽  
pp. 13-19 ◽  
Author(s):  
Eunmi Koh ◽  
Kyung Hwa Hong

Spent coffee grounds (SCGs) are solid residues generated from coffee brewing and are mostly discarded as waste. However, SCGs are drawing much attention because they have many health-promoting compounds that exhibit anti-tumor, anti-allergic, antioxidant, and other activities. Therefore, we tried to use SCGs for fabric dyeing to apply functional and coloring effects to the fabrics. SCGs were extracted by a conventional solid–liquid method, and the extract was applied to wool fabrics through a laboratory infrared dyeing machine. It was found that the extract contained a significant number of bioactive components, such as tannins (ca. 0.61 mg/mL); caffeine (ca. 0.38 mg/mL); and phenolic compounds, including chlorogenic acid (ca. 0.21 mg/mL). The wool fabrics dyed with the SCG extract exhibited promising coloring effects, displaying deep-brown hues. In addition, the colorfastness to washing and light were superior to that of fabrics dyed with other natural pigments. In particular, the wool fabrics dyed with the SCG extract showed excellent antioxidant ability (≤86%) and high levels of ultraviolet blocking (≥98%).


2020 ◽  
Vol 142 ◽  
pp. 04002
Author(s):  
Asmak Afriliana ◽  
Endar Hidayat ◽  
Mitoma Yoshiharu ◽  
Masuda Taizo ◽  
Hiroyuki Harada

The aim for this research is to make black compost from spent coffee grounds (SCG). The content of hemicellulose and lignin from SCG were 37.28% and 22.45%. For mineral content, Potassium (3 g/kg) is the most abundant element in spent coffee ground, followed by calcium (1.23 g/kg), magnesium (1.11 g/kg), phosphorus (0.89 g/kg) and natrium (0.7 g/kg). SCG also contains Carbon and Nitrogen ratios 1:19.5 which approaches the C / N ratio of the soil 1: 20. Composting process in aerobic condition for 2 months using Fungi, Bacillus and Lactic Acid Bacteria activator, produce black compost with good characteristic for plant and soil, such as C/N ratio under 1:10 and pH around 6 to 9.


Coffee is among the favorite drinks in Vietnam and many other countries. Production and consumption of coffee have released a huge amount of spent coffee ground. This study aimed to determine phenolic acids and fatty acids of spent coffee grounds collected in Ho Chi Minh city and how phenolic acid profile was affected by different environmentally friendly extractants. The results showed that average level of chlorogenic acid in ethanol/water extracts (840.4 779.9g/g) was significantly higher compared to water extracts (300.0g/g). Furthermore, the average total level of phenolic acids in ethanol/water extracts (1215.3g/g dry weight) was greater than that in the water extracts (779.9g/g dry weight). This indicated that ethanol/water outperformed water in regard to extraction of phenolic acids in the spent coffee grounds. Oil extracted from the spent coffee grounds was rich in linoleic acid (61g/g) and palmitic acid (47g/g). The findings of our study showed that the spent coffee grounds originating in Vietnam are a good source of phenolic acids and polyunsaturated fatty acids that could be utilized for food and nutraceutical production.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4667
Author(s):  
Sunyong Park ◽  
Hui-Rim Jeong ◽  
Yun-A Shin ◽  
Seok-Jun Kim ◽  
Young-Min Ju ◽  
...  

Agricultural by-products have several disadvantages as fuel, such as low calorific values and high ash contents. To address these disadvantages, this study examined the mixing of agricultural by-products and spent coffee grounds, for use as a solid fuel, and the improvement of fuel characteristics through torrefaction. Pepper stems and spent coffee grounds were first dried to moisture contents of <15% and then combined, with mixing ratios varying from 9:1 to 6:4. Fuel pellets were produced from these mixtures using a commercial pelletiser, evaluated against various standards, and classified as grade A, B, or Bio-SRF. The optimal ratio of pepper stems to spent coffee grounds was determined to be 8:2. The pellets were torrefied to improve their fuel characteristics. Different torrefaction temperatures improved the mass yields of the pellets to between 50.87% and 88.27%. The calorific value increased from 19.9% to 26.8% at 290 °C. The optimal torrefaction temperature for coffee ground pellets was 230 °C, while for other pellets, it was 250 °C. This study provides basic information on the potential enhancement of agricultural by-products for fuel applications.


2020 ◽  
Vol 83 (1) ◽  
pp. 27-36
Author(s):  
Mardawani Mohamad ◽  
Rizki Wannahari ◽  
Rosmawani Mohammad ◽  
Noor Fazliani Shoparwe ◽  
Kwan Wei Lun ◽  
...  

Used coffee grounds usually end up as landfill. However, the unique structural properties of its porous surface make coffee grounds can be transformed into biochar and performed as an alternative low cost adsorbent. Malachite green (MG) is a readily water soluble dye which is used extensively in textile and aquaculture industries. The mordant complex structures of MG generate destructive effects to animals and environment. In this study, adsorption of malachite green using spent coffee ground biochar as adsorbent was investigated. The experiments were designed in two methods: classical and optimisation by response surface methodology. Three parameters were studied, which are adsorbent dosage, contact time and pH while the responses in this study are malachite green removal (%) and adsorption capacity (mg/g). Optimisation studies were performed using response surface methodology. Quadratic model was chosen for both response and studied using central composite design. The correlation coefficient, R2 for the quadratic model of malachite green removal (%) and adsorption capacity (mg/g) were 0.95 and 0.99, respectively. The optimum malachite green removal (%) predicted was found at 99.27%, by using 0.12 g of adsorbent dosage, 43.05 minutes of contact time and pH of 9.45 at desirability of 1.0. The optimum adsorption capacity (mg/g) predicted was found at 118.01 mg/g, by using 0.02 g of adsorbent dosage, 60 minutes of contact time and pH of 10.24 at desirability of 0.98. So, it was concluded that the spent coffee ground biochar can be used as an effective adsorbent for malachite green removal from aqueous solution.


RSC Advances ◽  
2015 ◽  
Vol 5 (37) ◽  
pp. 29558-29562 ◽  
Author(s):  
Will Travis ◽  
Srinivas Gadipelli ◽  
Zhengxiao Guo

Utilising waste from spent coffee grounds KOH activated highly microporous carbons with surface areas of 2785 m2 g−1 and micropore volumes of 0.793 cm3 g−1 were synthesised that are capable of uptake capacities near 3 mmol g−1 at 50 °C and 1 bar.


2021 ◽  
Vol 947 (1) ◽  
pp. 012044
Author(s):  
Trấn Thi Thu Trà ◽  
Lê Nguyên Phúc ◽  
Võ Thi Ngoc Yến ◽  
Lê Thánh Sang ◽  
Nguyễn Thi Anh Thu ◽  
...  

Abstract Spent coffee ground (SCG) is the main by-product of the instant coffee industry. In this study, wheat flour and dried SCG powder were used in the production of cookies with high fiber and antioxidant content. The objective of the study was to evaluate the effects of SCG ratio in the cookie formulation on nutritional quality, physical properties and sensory overall acceptability of the product. SCG is a rich source of dietary fiber. In 100 g dry weight of SCG, the total fiber and phenolic contents were 76.6 ± 0.58% and 3828±12 mg GAE/100g dry basis, respectively. When the SCG ratio increased from 0 to 0.25 of the composite flour weight, the dough had increased hardness and reduced adhesiveness, cohesiveness and springiness. An increase in the SCG ratio in the cookie formulation also decreased the diameter and thickness of the product but enhanced its hardness. Cookie samples supplemented with SCG had higher dietary fiber and phenolic content as well as a higher antioxidant activity than the control sample. Cookie samples were considered as high fiber food when the SCG ratio was 0.1 or higher. The use of SCG reduced the overall acceptability of cookies. When the ratio of SGC powder varied from 0.1 to 0.2, a sensory score of the obtained cookies was acceptable.


Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1369 ◽  
Author(s):  
Yueke Ming ◽  
Yugang Duan ◽  
Ben Wang ◽  
Hong Xiao ◽  
Xiaohui Zhang

Recently, 3D printing of fiber-reinforced composites has gained significant research attention. However, commercial utilization is limited by the low fiber content and poor fiber–resin interface. Herein, a novel 3D printing process to fabricate continuous fiber-reinforced thermosetting polymer composites (CFRTPCs) is proposed. In brief, the proposed process is based on the viscosity–temperature characteristics of the thermosetting epoxy resin (E-20). First, the desired 3D printing filament was prepared by impregnating a 3K carbon fiber with a thermosetting matrix at 130 °C. The adhesion and support required during printing were then provided by melting the resin into a viscous state in the heating head and rapidly cooling after pulling out from the printing nozzle. Finally, a powder compression post-curing method was used to accomplish the cross-linking reaction and shape preservation. Furthermore, the 3D-printed CFRTPCs exhibited a tensile strength and tensile modulus of 1476.11 MPa and 100.28 GPa, respectively, a flexural strength and flexural modulus of 858.05 MPa and 71.95 GPa, respectively, and an interlaminar shear strength of 48.75 MPa. Owing to its high performance and low concentration of defects, the proposed printing technique shows promise in further utilization and industrialization of 3D printing for different applications.


2016 ◽  
Vol 368 ◽  
pp. 170-173
Author(s):  
Jiří Bobek ◽  
Jiří Šafka ◽  
Martin Seidl ◽  
Jiří Habr

This paper deals with mechanical properties research of innovative polymer multiphase metal and polymer composite materials consisting of matrix and isotropic or anisotropic oriented deterministic fractal shapes made by 3D printing. By creating of reinforcing internal structure consisting of deterministic fractal connected shapes is possible to gain unlimited mechanical properties directing. These fractal shapes - placed in multiphase system matrix – are significantly influencing whole material system mechanical properties mainly in case of stress on the limit of strength, proportional elongation on the limit of strength or tensile/ flexural modulus. Fractal shapes are also possible to properly locate, orient or shape modify according to potential material using with goal to gain maximal efficiency of fractal shapes occurrence. Producing of this multiphase system is realized by the help of 3D printing technology. Internal fractal shape structure is 3D printed from aluminium. This feature is in the next step over injected by polymer. So is possible to create any fractal shapes placed in polymer matrix which are by another technology unmanufacturable. Mechanical properties analyse is performed with respect to fractal shape type, fractal dimension, and fractal shape orientation.


Sign in / Sign up

Export Citation Format

Share Document