scholarly journals Techniques for Background Identification in the Search for Rare Processes with Crystal Scintillators

Physics ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 187-206
Author(s):  
Fabio Cappella ◽  
Antonella Incicchitti

In astroparticle, nuclear and subnuclear physics, low-counting experiments play an increasingly important role in the investigation of rare processes such as dark matter, double beta decay, some neutrino processes and low-background spectrometry. Extremely low-background features are more and more required to produce detectors and apparata of suitable sensitivity. Over time, a great deal of interest and attention in developing experimental techniques suitable to improve, verify and maintain the radiopurity of these detectors has arisen. In this paper, the characterization of inorganic crystal scintillators (such as, e.g., NaI(Tl), ZnWO4 and CdWO4) using α, β and γ radioactive sources and the main experimental techniques applied in the field to quantitatively identify the radioactive contaminants are highlighted; in particular, we focus on inorganic crystal scintillators, widely used in rare processes investigation, considering their applications at noncryogenic temperatures in the framework of the DAMA experiment activities at the Gran Sasso National Laboratory of the INFN (National Institute for Nuclear Physics, INFN).

2016 ◽  
Vol 31 (31) ◽  
pp. 1642001 ◽  
Author(s):  
R. Bernabei

The DAMA project at the Laboratori Nazionali del Gran Sasso (LNGS) of the I.N.F.N. has realized and developed many low background scintillators for rare event searches, as investigation of Dark Matter, double beta decay, etc. A short introduction to the project and a summary of the past and present activities will be given here.


Universe ◽  
2018 ◽  
Vol 4 (12) ◽  
pp. 147 ◽  
Author(s):  
Alessandro Di Marco ◽  
Alexander Barabash ◽  
Pierluigi Belli ◽  
Rita Bernabei ◽  
Roman Boiko ◽  
...  

Recent developments, results, and perspectives arising from double beta decay experiments at the Gran Sasso National Laboratory (LNGS) of the INFN by using HPGe detectors and crystal scintillators and by exploiting various approaches and different isotopes are summarized. The measurements here presented have been performed in the experimental set-ups of the DAMA collaboration. These setups are optimized for low-background studies and operate deep underground at LNGS. The presented results are of significant value to the field, and the sensitivity achieved for some of the considered isotopes is one of the best available to date.


2013 ◽  
Vol 28 (13) ◽  
pp. 1340026 ◽  
Author(s):  
IGOR G. IRASTORZA ◽  
ESTHER FERRER-RIBAS ◽  
THEOPISTI DAFNI

The Micromegas detectors have been gaining importance as reliable options in their implementation to Time Projection Chambers (TPCs) in experiments searching for Rare Events mainly due to their demonstrated good performance regarding low background levels, energy and time resolution, gain and stability of operation. In the present paper, we will briefly review the latest developments carried out within the T-REX project of detector R&D, and the performance achieved in the context of several experiments: the CAST solar axion search experiment, the NEXT experiment of double beta decay and the MIMAC dark matter directional search.


2020 ◽  
Author(s):  
Matthias Laubenstein

<p><span>In order to explore the highest energy scales that cannot be reached with accelerators, underground laboratories provide the low radioactive background environment necessary to search for extremely rare phenomena. Experiments range from the direct search for dark matter that constitutes the largest fraction of matter in the Universe, to the exploration of the properties of the neutrinos, the most elusive of the known particles and which might be particle and antiparticle at the same time, and to the investigation on why our universe contains only matter and almost no antimatter, and much more.</span></p><p><span>The Gran Sasso underground laboratory is one of the four Italian national laboratories run by the INFN (Istituto Nazionale di Fisica Nucleare). It is located under the Gran Sasso massif, in central Italy. To date it is one of the largest underground laboratories for astroparticle physics in the world and the most advanced in terms of complexity and completeness of its infrastructures. The scientific program at the Gran Sasso National Laboratory (Laboratori Nazionali del Gran Sasso, LNGS) is mainly focused on astroparticle, particle and nuclear physics. The laboratory presently hosts many experiments as well as R&D activities, including world-leading research in the fields of solar neutrinos, dark matter, neutrinoless double-beta decay and nuclear cross-section measurements of astrophysical interest. Other branches of sciences like earth science, biology and fundamental physics complement the activities carried out. The laboratory is operated as an international science facility and hosts experiments whose scientific merit is assessed by an international advisory Scientific Committee. A review of the main experiments carried out at LNGS will be given, together with the most recent and relevant scientific results achieved.</span></p>


2017 ◽  
Vol 09 (01) ◽  
pp. 22-29 ◽  
Author(s):  
V.B. Brudanin ◽  
V.G. Egorov ◽  
R. Hodák ◽  
A.A. Klimenko ◽  
P. Loaiza ◽  
...  

2013 ◽  
Vol 53 (A) ◽  
pp. 782-785
Author(s):  
Claudia Tomei

The CUORE (Cryogenic Underground Observatory for Rare Events) experiment will search for neutrinoless double beta decay of <sup>130</sup>Te, a rare nuclear process that, if observed, would demonstrate the Majorana nature of the neutrino and enable measurements of the effective Majorana mass. The CUORE setup consists of an array of 988 tellurium dioxide crystals, operated as bolometers, with a total mass of about 200 kg of <sup>130</sup>Te. The experiment is under construction at the Gran Sasso National Laboratory in Italy. As a first step towards CUORE, the first tower (CUORE-0) has been assembled and will soon be in operation.


2012 ◽  
Vol 2012 ◽  
pp. 1-38 ◽  
Author(s):  
Andrea Giuliani ◽  
Alfredo Poves

This paper introduces the neutrinoless double-beta decay (the rarest nuclear weak process) and describes the status of the research for this transition, both from the point of view of theoretical nuclear physics and in terms of the present and future experimental scenarios. Implications of this phenomenon on crucial aspects of particle physics are briefly discussed. The calculations of the nuclear matrix elements in case of mass mechanisms are reviewed, and a range for these quantities is proposed for the most appealing candidates. After introducing general experimental concepts—such as the choice of the best candidates, the different proposed technological approaches, and the sensitivity—we make the point on the experimental situation. Searches running or in preparation are described, providing an organic presentation which picks up similarities and differences. A critical comparison of the adopted technologies and of their physics reach (in terms of sensitivity to the effective Majorana neutrino mass) is performed. As a conclusion, we try to envisage what we expect round the corner and at a longer time scale.


2011 ◽  
Vol 20 (09) ◽  
pp. 1833-1930 ◽  
Author(s):  
WERNER RODEJOHANN

We review the particle physics aspects of neutrino-less double beta decay. This process can be mediated by light massive Majorana neutrinos (standard interpretation) or by something else (non-standard interpretations). The physics potential of both interpretations is summarized and the consequences of future measurements or improved limits on the half-life of neutrino-less double beta decay are discussed. We try to cover all proposed alternative realizations of the decay, including light sterile neutrinos, supersymmetric or left-right symmetric theories, Majorons, and other exotic possibilities. Ways to distinguish the mechanisms from one another are discussed. Experimental and nuclear physics aspects are also briefly touched, alternative processes to double beta decay are discussed, and an extensive list of references is provided.


Sign in / Sign up

Export Citation Format

Share Document