scholarly journals Stellar Structure in a Newtonian Theory with Variable G

Physics ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 1123-1132
Author(s):  
Júlio C. Fabris ◽  
Túlio Ottoni ◽  
Júnior D. Toniato ◽  
Hermano Velten

A Newtonian-like theory inspired by the Brans–Dicke gravitational Lagrangian has been recently proposed by us. For static configurations, the gravitational coupling acquires an intrinsic spatial dependence within the matter distribution. Therefore, the interior of astrophysical configurations may provide a testable environment for this approach as long as no screening mechanism is evoked. In this work, we focus on the stellar hydrostatic equilibrium structure in such a varying Newtonian gravitational coupling G scenario. A modified Lane–Emden equation is presented and its solutions for various values of the polytropic index are discussed. The role played by the theory parameter ω, the analogue of the Brans–Dicke parameter, in the physical properties of stars is discussed.

2013 ◽  
Vol 12 (1) ◽  
pp. 99-127
Author(s):  
M N Anandaram

The theory of polytropes dealing with the hydrostatic equilibrium structure of gas globes had its origin in Emden’s publication, Gaskugeln a century ago (1907). This review article has been written for students of physics and astrophysics not only to understand the theory of polytropes as the simplest of stellar models but also computationally solve the Lane-Emden equation for polytropes. Anyone can easily obtain values of normalized temperature, density, pressure and mass distribution as a function of the normalized radius or mass in any polytrope model in tabular form as well as in graphical form using the program code. Explanation of the algorithm to write a code is provided (python script on request). A graphical description of how the polytropic index determines the structure of the polytrope is also given.


Author(s):  
V. S. Geroyannis

In the so-called “global polytropic model”, we assume planetary systems in hydrostatic equilibrium and solve the Lane–Emden equation in the complex plane. We thus find polytropic spherical shells providing accommodation to planetary orbits. On the basis of this model, we develop a numerical method which can compute optimum values for the polytropic index of the global polytropic model that simulates the planetary system, for the orbits of the planets, and for the host star radius. We apply our method to the exoplanetary systems Kepler-11, Kepler-90, Kepler-215, HD 10180, HD 34445 and TRAPPIST-1.


2008 ◽  
Vol 4 (S252) ◽  
pp. 419-420
Author(s):  
Hongwei. Ge ◽  
R. F. Webbink ◽  
Z. Han

AbstractWe describe our work on the development and application of a stellar structure code to compute model sequences representing donor stars in interacting binaries subject to rapid (adiabatic) mass-loss. The donor star is assumed to remain in hydrostatic equilibrium, but no heat flow is allowed. These sequences can be used to define bifurcation sequences in close binary evolution, and to circumscribe possible survivors of common envelope evolution.


2011 ◽  
Vol 83 (6) ◽  
Author(s):  
S. Capozziello ◽  
M. De Laurentis ◽  
S. D. Odintsov ◽  
A. Stabile

1998 ◽  
Vol 188 ◽  
pp. 329-329
Author(s):  
D. Trèvese ◽  
G. Cirimele ◽  
M. de Simone

We performed a combined X-ray and optical analysis of the two clusters A539 and A2319, based on ROSAT PSPC 0.4-2.4 keV images of the public archive and F band photometry from microdensitometric scans of Palomar 48 inch plates (Trèvese et al. 1992, A&AS, 94, 327). Assuming spherical symmetry and following the methods adopted in Cirimele, Nesci, and Trèvese (1997, ApJ, 475, 11 (CNT97)) we derived the radial distribution of gas and galaxy densities ρgas and ρgal and we have computed the morphological parameter βxo ≡ d ln ρgas(r)/d ln ρgal(r), introduced in CNT97. This allows to check the validity of the hydrostatic equilibrium condition, which reads, for an isotropic and uniform velocity distribution of r.m.s. dispersion σr. In the case of A539, adopting σr=629 km s−1 from Fadda et al. (1996, ApJ, 473, 670) and T=1.57 keV David et al. (1996, ApJ, 473, 692), we obtained marginally consistent values of βspec= 1.54±0.50 and βxo=1.08±0.11. In the case of A2319 we took into account the presence of the secondary component A2319B (Oegerle et al. 1995, AJ, 110, 32) and the temperature gradient (Markevitch M. 1996, ApJ, 465, L1). The resulting radial increase of βspec is consistent with that of (βxo(r) + d ln T(r)/d ln ρgal), suggesting that the hydrostatic equilibrium holds also in the presence of a temperature gradient. The radial distribution of the total binding mass, the mass in galaxies and intergalactic gas show that in both clusters the gas mass profile is steeper than galaxies and total masses consistently with our previous results (CNT97). Adopting a constant gas temperature, the relevant baryon fractions are larger than 20 %, adding new evidence to the “baryon catastrophe”. Taking into account the radial decrease of gas temperature, the baryon fraction is further increased. This implies that either Ωo < 0.25, or that large halos of dark matter surround galaxy clusters, as suggested by White & Fabian (1995, MNRAS, 273, 72).


1995 ◽  
Vol 10 (15) ◽  
pp. 2225-2230 ◽  
Author(s):  
C.M. ZHANG ◽  
P.D. ZHAO

The general form of the parallelism tetrad field in the Schwarzschild coordinate system is presented in the framework of Hayashi’s gravitation theory with torsion. In the case of the symmetric energy-momentum tensor, we obtain the approximated equation of stellar structure, which, as a limit, is the Oppenheimer-Volkoff equation for hydrostatic equilibrium in general relativity.


2021 ◽  
Vol 81 (6) ◽  
Author(s):  
Aleksander Kozak ◽  
Aneta Wojnar

AbstractWe present the relativistic hydrostatic equilibrium equations for a wide class of gravitational theories possessing a scalar–tensor representation. It turns out that the stellar structure equations can be written with respect to the scalar–tensor invariants, allowing to interpret their physical role.


2001 ◽  
Vol 200 ◽  
pp. 492-495 ◽  
Author(s):  
Günther Wuchterl

Based on the theory of stellar structure and evolution combined with the theory of stellar atmospheres theoretical properties of young stars can be calculated. These calculations of pre-main sequence evolution have been refined over the last decades and do now provide theoretical spectra and colours even for very cool objects like young stars brown dwarfs and planets. Two of their key assumptions must become invalid towards the formation phases: (1) the hydrostatic equilibrium of pressure forces and gravity that assumes stellar matter to be at rest and (2) the non-dependence on the initial thermal structure. The former (1) is violated by accretion- and collapse flows, the latter (2) because a new born young star is observed with the specific thermal structure produced by the cloud collapse. I discuss changes in the theoretical properties of young stars that follow from calculating the pre-main sequence evolution as the consequence of the collapse of Bonnor-Ebert spheres.


Sign in / Sign up

Export Citation Format

Share Document