scholarly journals Non-Thermal Plasma Treatment Influences Shoot Biomass, Flower Production and Nutrition of Gerbera Plants Depending on Substrate Composition and Fertigation Level

Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 689
Author(s):  
Samantha Cannazzaro ◽  
Silvia Traversari ◽  
Sonia Cacini ◽  
Sara Di Di Lonardo ◽  
Catello Pane ◽  
...  

Non-thermal plasma (NTP) appears a promising strategy for supporting crop protection, increasing yield and quality, and promoting environmental safety through a decrease in chemical use. However, very few NTP applications on containerized crops are reported under operational growing conditions and in combination with eco-friendly growing media and fertigation management. In this work, NTP technology is applied to the nutrient solution used for the production of gerbera plants grown in peat or green compost, as an alternative substrate to peat, and with standard or low fertilization. NTP treatment promotes fresh leaf and flower biomass production in plants grown in peat and nutrient adsorption in those grown in both substrates, except for Fe, while decreasing dry plant matter. However, it causes a decrease in the leaf and flower biomasses of plants grown in compost, showing a substrate-dependent effect under a low fertilization regime. In general, the limitation in compost was probably caused by the high-substrate alkalinization that commonly interferes with gerbera growth. Under low fertilization, a reduction in the photosynthetic capacity further penalizes plant growth in compost. A lower level of fertilization also decreases gerbera quality, highlighting that Ca, Mg, Mn, and Fe could be reduced with respect to standard fertilization.

2021 ◽  
Vol 109 ◽  
pp. 365-373
Author(s):  
Gabriela N. Pereira ◽  
Karina Cesca ◽  
Anelise Leal Vieira Cubas ◽  
Débora de Oliveira

Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 112
Author(s):  
Giuseppina Tommonaro ◽  
Gennaro Roberto Abbamondi ◽  
Barbara Nicolaus ◽  
Annarita Poli ◽  
Costantino D’Angelo ◽  
...  

The use of ecofriendly strategies, such as the use of Plant Growth Promoting Bacteria, to improve the yield and quality of crops has become necessary to satisfy the growing demand of food and to avoid the use of chemical fertilizers and pesticides. In this study, we report the effects of an innovative microbial inoculation technique, namely Effective Microorganisms (EM), compared with traditional approaches, on productivity and nutritional aspect of four tomato varieties: Brandywine, Corbarino Giallo, S. Marzano Cirio 3, S. Marzano Antico. Results showed an increase of plant productivity as well as an enhanced antioxidant activity mainly in San Marzano Antico and Brandywine varieties treated with EM technology. Moreover, the polyphenol and carotenoid contents also changed, in response to the plant treatments. In conclusion, the application of EM® technology in agriculture could represent a very promising strategy in agricultural sustainability.


2021 ◽  
Author(s):  
Pavel Galář ◽  
Josef Khun ◽  
Anna Fučíková ◽  
Kateřina Dohnalová ◽  
Tomáš Popelář ◽  
...  

Non-thermal plasma activated water can be used for cheap, easy and chemicals-free surface modification of nanoparticles, with all the reactive species originating solely in air and water.


2021 ◽  
Vol 150 ◽  
pp. 106274
Author(s):  
Libo Yao ◽  
Jaelynne King ◽  
Dezhen Wu ◽  
Steven S.C. Chuang ◽  
Zhenmeng Peng

LWT ◽  
2021 ◽  
Vol 142 ◽  
pp. 111067
Author(s):  
Chia-Min Lin ◽  
Samuel Herianto ◽  
Shih-Ming Syu ◽  
Cian-Huei Song ◽  
Hsiu-Ling Chen ◽  
...  

2021 ◽  
pp. 117321
Author(s):  
Laila Patinglag ◽  
Louise M. Melling ◽  
Kathryn A. Whitehead ◽  
David Sawtell ◽  
Alex Iles ◽  
...  

2021 ◽  
Author(s):  
Huishan Shen ◽  
Xiangzhen Ge ◽  
Bo Zhang ◽  
Chunyan Su ◽  
Qian Zhang ◽  
...  

Non-thermal plasma is an emerging and effective starch modification technology. In this paper, plasma pretreatment was used to modify the citrate naked barley starch for enhancing the accessibility of citric...


Sign in / Sign up

Export Citation Format

Share Document