scholarly journals Growing and Flowering in a Changing Climate: Effects of Higher Temperatures and Drought Stress on the Bee-Pollinated Species Impatiens glandulifera Royle

Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 988
Author(s):  
Charlotte Descamps ◽  
Najet Boubnan ◽  
Anne-Laure Jacquemart ◽  
Muriel Quinet

Drought and higher temperatures caused by climate change are common stress conditions affecting plant growth and development. The reproductive phase is particularly sensitive to stress, but plants also need to allocate their limited resources to produce floral traits and resources to attract pollinators. We investigated the physiological and floral consequences of abiotic stress during the flowering period of Impatiens glandulifera, a bee-pollinated species. Plants were exposed to three temperatures (21, 24, 27 °C) and two watering regimes (well-watered, water stress) for 3 weeks. Not all parameters measured responded in the same manner to drought and/or heat stress. Drought stress induced leaf senescence, decreasing leaf number by 15–30% depending on growth temperature. Drought also reduced photosynthetic output, while temperature rise affected stomatal conductance. The number of flowers produced dropped 40–90% in response to drought stress, while higher temperatures shortened flower life span. Both stresses affected floral traits, but flower resources diminished in response to higher temperatures, with lower nectar volume and pollen protein content. We conclude that increased temperatures and drought stress, which are becoming more frequent with climate change, can negatively affect flowering, even if plants deploy physiological resistance strategies.

2021 ◽  
Author(s):  
Erica Jaakkola ◽  
Anna Maria Jönsson ◽  
Per-Ola Olsson ◽  
Maj-Lena Linderson ◽  
Thomas Holst

<p>Tree killing by spruce bark beetles (<em>Ips typographus</em>) is one of the main disturbances to Norway spruce (<em>Picea abies</em>) forests in Europe and the risk of outbreaks is amplified by climate change with effects such as increased risk of storm felling, tree drought stress and an additional generation of spruce bark beetles per year<sup>[1]</sup>. The warm and dry summer of 2018 triggered large outbreaks in Sweden, the increased outbreaks are still ongoing and affected about 8 million m<sup>3</sup> forest in 2020<sup>[2]</sup>. This is the so far highest record of trees killed by the spruce bark beetle in a single year in Sweden<sup>[2]</sup>. In 1990-2010, the spruce bark beetle killed on average 150 000 m<sup>3</sup> forest per year in southern Sweden<sup>[3]</sup>. Bark beetles normally seek and attack Norway spruces with lowered defense, i.e. trees that are wind-felled or experience prolonged drought stress<sup>[4]</sup>. However, as the number of bark beetle outbreaks increase, the risk of attacks on healthy trees also increase<sup>[5]</sup>. This causes a higher threat to forest industry, and lowers the possibilities to mitigate climate change in terms of potential decreases in carbon uptake if the forests die<sup>[4,5]</sup>. Norway spruce trees normally defend themselves by drenching the beetles in resin<sup>[6]</sup>. The resin in turn contains different biogenic volatile organic compounds (BVOCs), which can vary if the spruce is attacked by bark beetles or not<sup> [4,6]</sup>. The most abundant group of terpenoids (isoprene, monoterpenes and sesquiterpenes), is most commonly emitted from conifers, such as Norway spruce<sup>[7,8]</sup>. The aim of this study was to enable a better understanding of the direct defense mechanisms of spruce trees by quantifying BVOC emissions and its composition from individual trees under attack</p><p>To analyze the bark beetles’ impact on Norway spruce trees a method was developed using tree trunk chambers and adsorbent tubes. This enables direct measurements of the production of BVOCs from individual trees. Three different sites in Sweden, with different environmental conditions were used for the study and samples were collected throughout the growing season of 2019. After sampling, the tubes were analyzed in a lab using automated thermal desorption coupled to a gas chromatograph and a mass spectrometer to identify BVOC species and their quantity.</p><p>The preliminary results show a strong increase in BVOC emissions from a healthy tree that became infested during the data collection. The finalized results expect to enable better understanding of how spruce trees are affected by insect stress from bark beetles, and if bark beetle infestation will potentially result in increased carbon emission in the form of BVOCs.</p><p><strong>References</strong></p><p>[1] Jönsson et al. (2012). Agricultural and Forest Meteorology 166: 188–200<br>[2] Skogsstyrelsen, (2020). https://via.tt.se/pressmeddelande/miljontals-granar-dodades-av-granbarkborren-2020?publisherId=415163&releaseId=3288473<br>[3] Marini et al. (2017). Ecography, 40(12), 1426–1435.<br>[4] Raffa (1991). Photochemical induction by herbivores. pp. 245-276<strong><br></strong>[5] Seidl, et al. (2014). Nature Climate Change, 4(9), 806-810. <br>[6] Ghimire, et al. (2016). Atmospheric Environment, 126, 145-152.<br>[7] Niinemets, U. and Monson, R. (2013). ISBN 978-94-007-6606-8<br>[8] Kesselmeier, J. and Staudt, M. (1999). Journal of Atmospheric Chemistry, 33(1), pp.23-88</p>


2021 ◽  
Author(s):  
Florian Schnabel ◽  
Sarah Purrucker ◽  
Lara Schmitt ◽  
Rolf A. Engelmann ◽  
Anja Kahl ◽  
...  

Droughts increasingly threaten the worlds forests and their potential to mitigate climate change. In 2018-2019, Central European forests were hit by two consecutive hotter drought years, an unprecedented phenomenon that is likely to occur more frequently with climate change. Here, we examine trees growth resistance and physiological stress responses (increase in carbon isotope composition; Δδ13C) to this consecutive drought based on tree-rings of dominant tree species in a Central European floodplain forest. Tree growth was not reduced for most species in 2018, indicating that water supply in floodplain forests can partly buffer meteorological water deficits. Drought stress in 2018 was comparable to former single drought years, but the cumulative drought stress in 2019 induced drastic decreases in growth resistance and increases in Δδ13C across all species. Consecutive hotter droughts pose a novel threat to forests under climate change, even in forest ecosystems with high levels of water supply.


2021 ◽  
Vol 31 ◽  
pp. 00004
Author(s):  
Alexander Ebel ◽  
Wojciech Adamowski ◽  
Svetlana Mikhailova ◽  
Alla Verkhozina ◽  
Elena Zykova ◽  
...  

All available data on the distribution of Impatiens glandulifera Royle in Siberia was analyzed. The species appeared in Siberia as an unpretentious ornamental plant around the middle of the 20th century. Cases of withdrawal from culture have been recorded since the 1970s and 1980s; mass naturalization began at the end of the 20th century. Currently, the species is common in many regions of Siberia, but the most active in the Altai Territory, the Altai Republic, Kemerovo, Novosibirsk, Tomsk and Irkutsk Regions. It is common in anthropogenic habitats; it can also often be found in suburban forests, ravines, along the banks of water bodies. It shows tolerance to habitat conditions, but is especially active in areas with a close occurrence of groundwater on humus-rich soils. The species richness of I. glandulifera communities is from 10-15 to 40 species. In total, about 100 species of vascular plants were recorded in I. glandulifera communities in Siberia


Author(s):  
Xenia Hao-Yi Yeoh ◽  
Blessing Durodola ◽  
Kathrin Blumenstein ◽  
Eeva Terhonen

The major threats to the sustainable supply of forest tree products are adverse climate, pests and diseases. Climate change, exemplified by increased drought, poses a unique threat to global forest health. This is attributed to the unpredictable behavior of forest pathosystems, which can favor fungal pathogens over the host under persistent drought stress conditions in the future. Currently, the effects of drought on tree resistance against pathogens are hypothetical, thus research is needed to identify these correlations. Norway spruce (Picea abies) is one of the most economically important tree species in Europe, and is considered highly vulnerable to changes in climate. Dedicated experiments to investigate how disturbances will affect the Norway spruce - Heterobasidion sp. pathosystem are important, in order to develop different strategies to limit the spread of H. annosum s.l. under the predicted climate change. Here, we report a transcriptional study to compare Norway spruce gene expressions to evaluate the effects of water availability and the infection of Heterobasidion parviporum. We performed inoculation studies of three-year-old saplings in a greenhouse (purchased from a nursery). Norway spruce saplings were treated in either high (+) or low (-) water groups: high water group received double the water amount than the low water group. RNA was extracted and sequenced. Similarly, we quantified gene expression levels of candidate genes in biotic stress and jasmonic acid (JA) signaling pathways using qRT-PCR, through which we discovered a unique preferential defense response of H. parviporum-infected Norway spruce under drought stress at the molecular level. Disturbances related to water availability, especially low water conditions can have negative effects on the tree host and benefit the infection ability of the pathogens in the host. From our RNA-seq analysis, 114 differentially expressed gene regions were identified between high (+) and low (-) water groups under pathogen attack. None of these gene pathways were identified to be differentially expressed from both non-treated and mock-control treatments between high (+) and low (-) water groups. Finally, only four genes were found to be associated with drought in all treatments.


2020 ◽  
Vol 71 (16) ◽  
pp. 4658-4676 ◽  
Author(s):  
Gregory A Gambetta ◽  
Jose Carlos Herrera ◽  
Silvina Dayer ◽  
Quishuo Feng ◽  
Uri Hochberg ◽  
...  

Abstract Water availability is arguably the most important environmental factor limiting crop growth and productivity. Erratic precipitation patterns and increased temperatures resulting from climate change will likely make drought events more frequent in many regions, increasing the demand on freshwater resources and creating major challenges for agriculture. Addressing these challenges through increased irrigation is not always a sustainable solution so there is a growing need to identify and/or breed drought-tolerant crop varieties in order to maintain sustainability in the context of climate change. Grapevine (Vitis vinifera), a major fruit crop of economic importance, has emerged as a model perennial fruit crop for the study of drought tolerance. This review synthesizes the most recent results on grapevine drought responses, the impact of water deficit on fruit yield and composition, and the identification of drought-tolerant varieties. Given the existing gaps in our knowledge of the mechanisms underlying grapevine drought responses, we aim to answer the following question: how can we move towards a more integrative definition of grapevine drought tolerance?


2019 ◽  
Vol 124 (1) ◽  
pp. vi-viii
Author(s):  
Nicholas Kooyers

This article comments on: M. Bouzid, F. He, G. Schmitz, R. E. Häusler, A. P. M. Weber, T. Mettler-Altmann and J. de Meaux. 2019. Arabidopsis species deploy distinct strategies to cope with drought stress. Annals of Botany 124(1): 27–40.


Sign in / Sign up

Export Citation Format

Share Document