scholarly journals Molecular Phylogenetic Diversity and Biological Characterization of Diaporthe Species Associated with Leaf Spots of Camellia sinensis in Taiwan

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1434
Author(s):  
Hiran A. Ariyawansa ◽  
Ichen Tsai ◽  
Jian-Yuan Wang ◽  
Patchareeya Withee ◽  
Medsaii Tanjira ◽  
...  

Camellia sinensis is one of the major crops grown in Taiwan and has been widely cultivated around the island. Tea leaves are prone to various fungal infections, and leaf spot is considered one of the major diseases in Taiwan tea fields. As part of a survey on fungal species causing leaf spots on tea leaves in Taiwan, 19 fungal strains morphologically similar to the genus Diaporthe were collected. ITS (internal transcribed spacer), tef1-α (translation elongation factor 1-α), tub2 (beta-tubulin), and cal (calmodulin) gene regions were used to construct phylogenetic trees and determine the evolutionary relationships among the collected strains. In total, six Diaporthe species, including one new species, Diaporthe hsinchuensis, were identified as linked with leaf spot of C. sinensis in Taiwan based on both phenotypic characters and phylogeny. These species were further characterized in terms of their pathogenicity, temperature, and pH requirements under laboratory conditions. Diaporthe tulliensis, D. passiflorae, and D. perseae were isolated from C. sinensis for the first time. Furthermore, pathogenicity tests revealed that, with wound inoculation, only D. hongkongensis was pathogenic on tea leaves. This investigation delivers the first assessment of Diaporthe taxa related to leaf spots on tea in Taiwan.

Phytotaxa ◽  
2019 ◽  
Vol 401 (4) ◽  
pp. 287
Author(s):  
DONG FANG PEI ◽  
SEIN LAI LAI AUNG ◽  
HAI FENG LIU ◽  
QUAN KE LIU ◽  
ZHI HE YU ◽  
...  

In 2017, a new fungal species, Alternaria hydrangeae, was isolated from necrotic leaf spots of Hydrangea paniculata in Shenyang Botanical Garden, Liaoning, China. Phylogenetic analyses based on five genes (ITS, GPDH, Alt a1, RPB2 and TEF1) indicated that the species is a new taxon closely related to Alternaria deserticola in section Porri. Both species were significantly different from each other based on cultural features on SNA and PCA. Previously, A. deserticola was morphologically considered as A. acalyphicola. With respect to conidial characters, the species was distinct from A. acalyphicola in conidia shape, size and transverse septa. Pathogenicity tests indicated that it could induce necrotic symptoms on its host. The species is illustrated here as a new one causing leaf spot on H. paniculata.


Plant Disease ◽  
2021 ◽  
Author(s):  
Cheng-Chun Huang ◽  
Hsien-Hao Liu ◽  
Ping-Hu Wu ◽  
Hao-Xun Chang

Starting from the May to August 2020 (average humidity 76.6% and temperature 25.2°C in Taipei), Boston ivy (Parthenocissus tricuspidata) plants on the campus of National Taiwan University (25°01'05.4"N 121°32'36.6"E) exhibited leaf rusts caused by Phakopsora ampelopsidis (Tzean et al., 2019) and leaf spots caused by an unknown pathogen. The leaf spots appeared reddish to brown color and mostly irregular to round shape on the simple and trifoliate leaflets (Supplemental Figure 1A-C). The leaf spots were surface-disinfected with 1% NaOCl for 30 seconds, and the margin of healthy and infected tissues was cut and placed onto water agar, which were incubated at room temperature. Hyphae grown out from leaf spots were sub-cultured on potato dextrose agar (PDA), and the majority of isolates exhibited white colony with black pycnidial conidiomata embedded in PDA. The pycnidial conidiomata of two-week-old has an average diameter of 463±193 μm (n=30) and the sizes of α-conidia were 5.71±0.49 μm in length and 2.42±0.32 μm in width (n=50) similar to the previous records (Crous et al. 2015). The α-conidium was one-celled, hyaline, and ovoid with two droplets (Supplemental Figure 1D-G). This putative pathogen was re-inoculated to confirm its pathogenicity on the leaves of Boston ivy plants. A PDA block with actively growing fungal edge was placed on the tiny needle-wounded leaves of detached branches (Supplemental Figure H-I) and the whole plants in pots (Supplemental Figure 1J-M) in a moist chamber at 28°C in dark. Reddish to brown leaf spots were observed by 2 days post-inoculation (dpi) and the leaf spots expanded by 5 dpi. To complete the Koch’s postulates, the pathogen was re-isolated from inoculated leaves and the re-isolated pathogen exhibited identical morphology to the original isolate. The internal transcribed spacer (ITS), translational elongation factor subunit 1-α gene (EF1α), β-tubulin (BT), and calmodulin (CAL) was amplified using the primers ITS1/ITS4 (Martin and Rygiewicz. 2005), EF1-728F/EF1-986R, Bt2a/Bt2b, and CAL-228F/CAL-737R, respectively (Manawasinghe et al. 2019). Using BLAST in the NCBI database, the ITS (MT974186), EF1α (MT982963), and β-tubulin (MT982962) sequences showed 98.57% (NR_147574.1, 553 out of 561 bp), 98.04% (KR936133.1, 350 out of 357 bp), and 99.23% (KR936132.1, 518 out of 522 bp) identity to the Diaporthe tulliensis ex-type BRIP 62248a, respectively (Dissanayake et al. 2017). Phylogenetic analysis using concatenated sequences of ITS, EF1α, and β-tubulin grouped the D. tulliensis isolated from Boston ivy leaf spots with the D. tulliensis ex-type (Supplemental Figure 1N). In summary, the morphological and molecular characterizations supported the causal pathogen of Boston ivy leaf spot as D. tulliensis. While Diaporthe ampelopsidis was reported to infect Parthenocissus quinquefolia and P. tricuspidata (Anonymous, 1960; Wehmeyer, 1933), there is no record for D. tulliensis infecting Boston ivy according to the USDA National Fungus Collections (Farr and Rossman. 2020). Because pathogens of Boston ivy such as P. ampelopsidis may also infect close-related crops like grape (Vitis vinifera L.) and D. tulliensis has been known to infect kiwifruits (Actinidia chinensis) and cocoa (Theobroma cacao) (Bai et al. 2016; Yang et al. 2018), the emergence of D. tulliensis should be aware to avoid potential damage to economic crops.


Plant Disease ◽  
2015 ◽  
Vol 99 (2) ◽  
pp. 290-290
Author(s):  
C. S. Xue ◽  
Y. Y. Lu ◽  
S. Q. Xiao ◽  
Y. X. Duan

During July 2012, leaf spots affecting 60% of the leaves were observed on soybean cultivar He Feng 60 in fields near Shenyang City, Liaoning Province, leading to 5 to 10% yield loss. The leaf spots were associated with the leaf margins and were irregularly shaped, with brown to black margins and surrounded by a thin, yellow halo. Often, several spots merged to form large necrotic areas, which contained numerous pycnidia on the underside of the leaf. Small pieces (5 mm2) were excised from the margin of diseased and healthy tissue, surface-sterilized in 70% ethanol solution for 30 s and 0.1% mercuric chloride solution for 1 min, washed in three changes of sterile distilled water, and transferred to plates containing potato dextrose agar (PDA). Cultures were maintained in an incubator at 25°C with a 12 h dark/light photoperiod for 5 to 7 days. On PDA, colonies were white with yellow areas, floccose, dense, and moderately fast growing, attaining a diameter of 3.9 mm after 5 days and 9.0 mm after 14 days. Finally, large black stromata appeared after 28 days at 25°C. The conidiomata pycnidia were black, stomatic, globose, length 83.6 to 232 μm, width 37.9 to 146.3 μm and produced α-conidia that were unicellular, hyaline, sometimes two-guttulate, length 4.75 to 8.25 μm, width 1.50 to 3.00 μm. β-Conidia were not observed. To confirm the morphological identification, the ribosomal internal transcribed spacers (ITS1-5.8S-ITS2) from isolates were sequenced (GenBank Accession No. KC460334). The PCR products were cloned into a pMD-19T Cloning Vector (Sangon Biotech, Shanghai, China). The clones were purified with TIANprep Mini Plasmid Kit (Tiangen Biotech, Beijing, China) to get the full-length ITS sequence. BLAST analysis of the isolates showed 100% nucleotide sequence identity with Phomopsis longicolla (AY745021). Four additional primer pairs—large subunit (NL1/NL4), beta-tublin gene (Bt2a/Bt2b), translation elongation factor 1α gene(EF1-728F/EF1-986R), and act gene(ACT-512F/ACT-783R) (1,2)—were amplified and sequenced as described above. The large subunit gene, β-tubulin gene, and translation elongation factor 1α gene from isolates were sequenced (Sangon Biotech). BLAST analysis indicated that the isolates had 100% nucleotide sequence identity with P. longicolla (AB107259, HQ333514, and AF398896). Because the act gene sequence of P. longicolla was not in the NCBI database, this sequence had 94% nucleotide sequence identity with P. cuppatea (JN230389). To fulfill Koch's postulates, five leaves on five healthy soybean plants were inoculated with a conidial suspension (106/ml). Plants inoculated with sterile water served as the noninoculated controls. Plants were incubated in the greenhouse at 25°C. All the inoculated leaves developed pinhead spots on the leaves, gradually increasing to large brown spots. Spots were irregularly shaped, brown and necrotic in the center, and surrounded by a yellow halo. Black pycnidia appeared after 10 days, whereas the noninoculated control plants remained asymptomatic. P. longicolla was consistently recovered from all inoculated plants, except the control. Morphological description of isolates was similar to that of Hobbs (3). However, as described by Hobbs and others, P. longicolla conidiomata pycnidia have prominent necks more than 200 μm long, opening by apical ostioles; locules are uniostiolate or multiostiolate, globose, up to 500 μm wide. The pycnidia size of isolates by frozen section method was smaller than that of Hobbs. Based on morphological and sequence comparisons, the pathogen of leaf spot disease is caused by P. longicolla. This is the first reported leaf spot caused by P. longicolla on soybean in China. References: (1) T. Boekhou et al. Stud. Mycol. 38:75, 1995. (2) P. W. Crous et al. Stud. Mycol. 75:37, 2013. (3) T. W. Hobbs et al. Mycologia 77:535, 1985.


Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 697-697 ◽  
Author(s):  
L. X. Zhou ◽  
W. X. Xu

Tea is the most popular non-alcoholic beverage crop in the world, which originated in China and has been cultivated in over 45 countries. In recent years, a leaf spot disease of unknown etiology has been observed on young leaves of tea trees (Camellia sinensis) grown in Luotian county, Hubei Province, China. Observed symptoms display grayish brown to white spots (about 1 cm in diameter) surrounded by brown edges. Over 20% of the young leaves were affected on surveyed trees. To identify the pathogen, six symptomatic tea leaves were collected from six individual tea trees of unknown variety in August 2012. A thin section (3 to 5 mm) of symptomatic tissue was sterilized in a bleach solution of 3% hypochlorite and placed on potato dextrose agar (PDA) medium at 25°C in darkness for isolation. Six fungal colonies displaying gray-brown and gray-white aerial mycelia were consistently recovered from lesions of the six leaves, termed as T1 to T6, respectively. Conidia produced on the colonies were olive brown, obpyriform, short conical beak at the tip, 0 to 3 vertical and 1 to 6 transverse septa, and length × width of 7.1 to 31.7 (avg. 20.1) × 2.9 to 12.7 (avg. 7.2) μm. T1 to T6 were identified as Alternaria alternata on the basis of morphological characterization, respectively (2). Confirmation of the species identification was obtained by molecular characterization of their internal transcribed spacer (ITS) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) regions amplified from the genomic DNAs using the universal primers (1). The results revealed identical sequences of ITS (GenBank Accession No. KF699530) and GAPDH among the six isolates. BLAST searches showed that they had the highest similarity with A. alternata strains, with 98.3% for ITS (AJ276055) and 96.2% for GAPDH (EF513205), deposited in fungus database ( http://www.mycobank.org/ ). Pathogenicity tests were conducted on the detached leaves expanding for 10 to 20 days of two tea varieties (cvs. Fudingdabai and Taicha No. 12) in triplicate by placing 4 mm diameter discs from 5-day-old PDA plates of T3 and T6, which were incubated in an incubator at 25°C with a 12-h photoperiod for 7 days. All inoculated leaves with or without wound treatment developed brown spots similar to the original ones at 7 days post inoculation (dpi) while the control leaves inoculated with non-colonized PDA plugs remained asymptomatic. Isolates recovered from diseased samples were of the same morphology and ITS sequence as the inoculated ones. Alternaria alternata had been described on C. sinensis in China (3), but it was only reported as a severe foliar fungal pathogen of tea in North Bengal, India (1), and to our knowledge, this is the first report of A. alternata causing leaf spots on tea leaves (C. sinensis) in China. In addition to quantity loss, the species may result in a decrease of quality of tea crop considering that it can produce Alternaria toxins related to animal and public health. The etiologic identification of the disease is expected to provide useful information for its control. References: (1) B. N. Chakraborty et al. Plant Pathol. 55:303, 2006. (2) E. G. Simmons. Page 1 in: Alternaria Biology, Plant Diseases and Metabolites. J. Chelchowski and A. Visconti, eds. Elsevier, Amsterdam, 1992. (3) F. L. Tai. Page 1527 in: Sylloge Fungorum Sinicorum. eds. Sci. Press Acad. Sin. Beijing, 1979. (4) B. S. Weir et al. Stud. Mycol. 73:115, 2012.


2021 ◽  
Vol 7 (1) ◽  
pp. 64
Author(s):  
Ning Jiang ◽  
Xinlei Fan ◽  
Chengming Tian

Two Castanea plant species, C. henryi and C. mollissima, are cultivated in China to produce chestnut crops. Leaf spot diseases commonly occur in Castanea plantations, however, little is known about the fungal species associated with chestnut leaf spots. In this study, leaf samples of C. henryi and C. mollissima were collected from Beijing, Guizhou, Hunan, Sichuan and Yunnan Provinces, and leaf-inhabiting fungi were identified based on morphology and phylogeny. As a result, twenty-six fungal species were confirmed, including one new family, one new genus, and five new species. The new taxa are Pyrisporaceae fam. nov., Pyrispora gen. nov., Aureobasidium castaneae sp. nov., Discosia castaneae sp. nov., Monochaetia castaneae sp. nov., Neopestalotiopsis sichuanensis sp. nov. and Pyrispora castaneae sp. nov.


Plant Disease ◽  
2020 ◽  
Author(s):  
Ashish Adhikari ◽  
Xuechun Wang ◽  
Brett Lane ◽  
Philip F Harmon ◽  
Erica Goss

Guinea grass is an invasive perennial C4 grass and is a common weed around agricultural crops in Louisiana, Texas, and Hawaii, USA (Overholt and Franck 2019). In November 2018, leaf spots were observed on Guinea grass occurring in an organic garden located in Gainesville, Florida, USA. Lesions were oblong to irregular, dark grey to brownish center with pale-yellow to brownish black margin. Lesions had coalesced, forming necrotic margins that spread from the leaf tip, resulting in leaf blight and collapse of the canopy. Pieces of symptomatic leaf blades (5 sq cm) were surface sterilized (1 min), washed with sterile distilled water and plated onto water agar media plates. Plates were incubated at 27°C under 12-h light/dark for 3 to 5 days. Grey to black cottony mycelium was consistent on all plates and produced conidia characteristic of Bipolaris spp. Conidia were transferred to potato dextrose agar (PDA) plates with a 0.5 mm diameter sterile needle. Three isolates GG1, GG2 and GG3 were successfully grown on PDA. Conidia were black to brown colored, distoseptate with 3 to 8 septa and measured from (60.6- )70-105(-139.8) × (16.0-)17-23(-25.9) μm (avg: 93.3 μm, n=35, SD = 20.6; avg = 21.3 μm, n = 35, SD = 2.89). Conidiophores were in groups or single, brown, smooth and straight, septate and swollen at upper tip. Sigma Extract-N-Amp was used for genomic DNA extraction. Primers ITS1/ITS4 and GPD1/GPD2 (Berbee et al. 1999) were used to amplify and sequence the internal transcribed spacer region (ITS) and partial glyceraldehyde-3-phosphate dehydrogenase (GPDH) gene, respectively. Sequences were aligned using MUSCLE and alignment was trimmed for length. Maximum likelihood phylogenetic trees were constructed with 1,000 bootstrap samples based on the K2+G substitution model, selected by BIC for these two loci using Mega X (Kumar et al. 2018). The ITS and GPDH sequences of GG1, GG2 and GG3 (Genbank accessions MT514518-20, MT576654-56), grouped with B. yamadae isolates CPC_28807 and CBS_202.29 in phylogenetic trees (Marin-Felix et al. 2017). All three isolates from Guinea grass were inoculated on Sach’s agar (Luttrell 1958) at 27°C under 12-h light/dark for a week, but no sexual morph was observed, and consistent for two repeated inoculations. To fulfill Koch’s postulates, one isolate, GG1, was used. Conidia were harvested from a one-week-old colony grown on PDA incubated at 27°C and 12-h light/dark cycle. The concentration of the conidial suspension was adjusted to 105 conidia/ml using a hemocytometer. Using a Passche H-202S airbrush sprayer, five-week-old seedlings of Guinea grass were sprayed until runoff with the conidia suspension or 0.5% tween water only. Each treatment included four replicates and the experiment was repeated. Leaf spot symptoms were observed on the seedlings inoculated with conidia, whereas seedlings sprayed with water were asymptomatic. Cultures with the expected morphology were isolated from symptomatic leaf blades and absent from control plants. To our knowledge, this is the first report of leaf spot on Guinea grass caused by B. yamadae in Florida, USA. B. yamadae was previously reported from Guinea grass in India, and from other Panicum species in the northern USA (Farr and Rossman 2019). B. yamadae was also isolated from sugarcane in Cuba and China, and corn in Japan (Manamgoda et al. 2014, Raza et al. 2019), which suggests that it has the potential to impact agronomic crops in Florida, such as sugarcane and corn.


Pathogens ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 788
Author(s):  
Saida S. Gerardo-Lugo ◽  
Juan M. Tovar-Pedraza ◽  
Sajeewa S. N. Maharachchikumbura ◽  
Miguel A. Apodaca-Sánchez ◽  
Kamila C. Correia ◽  
...  

Mango is one of the most popular and nutritious fruits in the world and Mexico is the world’s largest exporter. There are many diseases that directly affect fruit yield and quality. During the period 2016–2017, leaves with grey leaf spots were collected from 28 commercial mango orchards distributed in two main production areas in Sinaloa State of Mexico, and 50 Neopestalotiopsis isolates were obtained. Fungal identification of 20 representative isolates was performed using morphological characterization and phylogenetic analysis based on the internal transcribed spacer (ITS) region of ribosomal DNA, part of the translation elongation factor 1-alpha (TEF) and the β-tubulin (TUB) genes. Phylogenetic analysis indicated that the 20 isolates from this study formed four consistent groups, however, overall tree topologies do not consistently provide a stable and sufficient resolution. Therefore, even though morphological and phylogenetic separation is evident, these isolates were not assigned to any new taxa and were tentatively placed into four clades (clades A–D). Pathogenicity tests on detached mango leaves of cv. Kent showed that the 20 isolates that belong to the four Neopestalotiopsis clades from this study and induce lesions on mango leaves. This is the first report of species of Neopestalotiopsis causing mango grey leaf spot disease in Mexico.


2021 ◽  
Vol 25 (05) ◽  
pp. 1096-1100
Author(s):  
Shazia Shafique

Fungal leaf spots disease is a main reason of rose (Rosa indica L.) crop failure in Pakistan. Isolation and identification of pathogen from rose plant was done by observing phenotypic characters which were further executed on molecular bases using ITS, EF and Bt2a/Bt2b primers. On these bases, pathogen was identified as Fusarium incarnatum. Then, Koch’s pathogenicity test was applied to confirm the virulence level of the isolated fungus by artificially inoculating it on R. indica seedlings in plate and pot trials. This study signifies the first report of F. incarnatum as a leaf spot pathogen of R. indica in Pakistan and highlights the need to explicate the management strategies of pathogen populations. © 2021 Friends Science Publishers


2013 ◽  
Vol 22 (2) ◽  
pp. 103-108
Author(s):  
Anita Rani Shutrodhar ◽  
Shamim Shamsi

Characteristic symptoms of anthracnose and leaf spot were recorded from diseased leaf samples of Aloe vera L. A total of 8 fungal species, namely Alternaria pluriseptata (Karst. & Har.) Jorstad, Aspergillus flavus Link, Aspergillus niger Van Tieghem, Cladosporium oxysporum Berk. & Curt., Colletotrichum gloeosporioides (Penz.) Sacc., Nigrospora oryzae (Berk. & Br.) Petch, Penicillium sp. and Pestalotiopsis guepinii (Desm.) Stay. were found to be associated with healthy and diseased leaf samples. In addition to above 8 fungi, Curvularia brachyospora Boedijn, Epicoccum purpurascens Ehrenb. ex Schlecht and Sclerotium sp. were also associated with diseased leaf samples of the plant. The prevalence of the fungi ranged 1.43 - 13.35% on healthy leaves and 1.43 - 62.16% on infected leaves. The frequency of C. gloeosporioides was the maximum and that of Aspergillus and Penicillium was the lowest. Pathogenicity test revealed that C. gloeosporioides causes anthracnose and E. purpurascens and P. guepinii cause leaf spots of A. vera. Dhaka Univ. J. Biol. Sci. 22(2): 103-108, 2013 (July)


2021 ◽  
Vol 17 (4) ◽  
pp. 789-799
Author(s):  
Hardeep Kaur ◽  
Anamika Yadav ◽  
Khushbu Wadhwa ◽  
Kusum Jain ◽  
Soma M Ghorai

Agricultural azoles are preferred antifungals used by farmers due to their high efficiency against broad range of plant diseases like leaf rust, leaf spots, and powdery mildews. The past few decades have witnessed an unprecedented rise in their usage for crop protection. These compounds can thrive in environment for several months and being fungistatic in nature, can cause imbalance in the ecology of fungal species in the environment. Further their heavy use can lead to contamination and residues in plants, water, soil, and development of human health risk. These azoles share the similar mode of action and structural properties with medical azoles that are used for the treatment of fungal infections. Recent years have also seen an exceptional surge in the number of multi-drug resistant nosocomial Candida infections, especially in immuno compromised patients. The present review is an attempt to show the plausible mechanism of cross resistance among Candida isolates to agricultural and medical azoles. The study highlights the requirement of thorough scrutiny of usage of azoles both in medicine and agriculture.


Sign in / Sign up

Export Citation Format

Share Document