scholarly journals Translational Chickpea Genomics Consortium to Accelerate Genetic Gains in Chickpea (Cicer arietinum L.)

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2583
Author(s):  
Ramesh Palakurthi ◽  
Veera Jayalakshmi ◽  
Yogesh Kumar ◽  
Pawan Kulwal ◽  
Mohammad Yasin ◽  
...  

The Translational Chickpea Genomics Consortium (TCGC) was set up to increase the production and productivity of chickpea (Cicer arietinum L.). It represents research institutes from six major chickpea growing states (Madhya Pradesh, Maharashtra, Andhra Pradesh, Telangana, Karnataka and Uttar Pradesh) of India. The TCGC team has been engaged in deploying modern genomics approaches in breeding and popularizing improved varieties in farmers’ fields across the states. Using marker-assisted backcrossing, introgression lines with enhanced drought tolerance and fusarium wilt resistance have been developed in the genetic background of 10 elite varieties of chickpea. Multi-location evaluation of 100 improved lines (70 desi and 30 kabuli) during 2016–2017 and 2018–2019 enabled the identification of top performing desi and kabuli lines. In total, 909 Farmer Participatory Varietal Selection trials were conducted in 158 villages in 16 districts of the five states, during 2017–2018, 2018–2019, and 2019–2020, involving 16 improved varieties. New molecular breeding lines developed in different genetic backgrounds are potential candidates for national trials under the ICAR-All India Coordinated Research Project on Chickpea. The comprehensive efforts of TCGC resulted in the development and adoption of high-yielding varieties that will increase chickpea productivity and the profitability of chickpea growing farmers.

Genetika ◽  
2015 ◽  
Vol 47 (2) ◽  
pp. 383-393 ◽  
Author(s):  
Khosro Mohammadi ◽  
Reza Talebi

To determine the association between genetic parameters and morphological traits in chickpea (Cicer arietinum L.) genotypes, a field experiment was conducted with 49 different landrace, breeding lines and cultivated chickpea genotypes using a 7?7 lattice square design with 2 replications in the 2012-2013 growing season. Genetic parameters including genetic, environmental and phenotypic variances; coefficients of variation; heritability; correlation coefficients; factor analysis and path coefficients were estimated, and cluster analysis was performed. High heritability values observed in measured traits indicating that these traits are controlled mainly by additive genes and that selection of such traits may be effective for improving seed yield. Number of seeds per plant, 100-seed weight and plant biomass had a positive direct effect on seed yield. These traits also had positive and highly significant phenotypic correlations with seed yield. Using principal component (PC) analysis, the first three PCs with eigenvalues more than 1 contributed 70.94% of the variability among accessions. The germplasm were grouped into 3 clusters. Each cluster had some specific characteristics of its own and the cluster I was clearly separated from cluster II and III. Overall the results, it can be concluded that seed yield in chickpea can be improved by selecting an ideotype having greater number of seeds per plant, 100-seed weight and plant biomass.


2012 ◽  
Vol 37 (1) ◽  
pp. 129-136
Author(s):  
MA Syed ◽  
MR Islam ◽  
MS Hossain ◽  
MM Alam ◽  
MN Amin

Genetic diversity of 27 chickpea genotypes was studied through Mahalanobis D2 and Principal Component analysis. The genotypes under study fall into five clusters. The cluster II contained the highest number of genotypes (11) and Cluster I contained the lowest. Cluster I produced the highest mean value for number of pods per plant. The inter cluster distances were much higher than the intra cluster distances. Cluster V exhibited the highest intra cluster distance while the lowest distance was observed in cluster I. The highest inter cluster distance was observed between cluster I and II while the lowest was between cluster III and V. Considering all the characters, it was suggested that the genotypes BD6549, BD6603, and BD6548 could used as parents for future breeding programs to develop high yielding varieties of chickpea. DOI: http://dx.doi.org/10.3329/bjar.v37i1.11184 Bangladesh J. Agril. Res. 37(1): 129-136, March 2012  


2004 ◽  
Vol 55 (10) ◽  
pp. 1071 ◽  
Author(s):  
J. D. Berger ◽  
N. C. Turner ◽  
K. H. M. Siddique ◽  
E. J. Knights ◽  
R. B. Brinsmead ◽  
...  

Chickpea (Cicer arietinum L.) genotypes comprising released cultivars, advanced breeding lines, and landraces of Australian, Mediterranean basin, Indian, and Ethiopian origin were evaluated at 5 representative sites (Merredin, WA; Minnipa, SA; Walpeup, Vic.; Tamworth, NSW; Warwick, Qld) over 2 years. Data on plant stand, early vigour, phenology, productivity, and yield components were collected at each site. Site yields ranged from 0.3 t/ha at Minnipa in 1999 to 3.5 t/ha at Warwick in 1999. Genotype by environment (G × E) interaction was highly significant. Principal components analysis revealed contrasting genotype interaction behaviour at dry, low-yielding sites (Minnipa 1999, Merredin 2000) and higher rainfall, longer growing-season environments (Tamworth 2000). Genotype clusters performing well under stress tended to yield well at all sites except Tamworth in 2000, and were characterised by early phenology and high harvest index, but were not different in terms of biomass or early vigour. Some of these traits were strongly influenced by germplasm origin. The material with earliest phenology came from Ethiopia, and southern and central India, with progressively later material from northern India and Australia, and finally the Mediterranean. There was a delay between the onset of flowering and podding at all sites, which was related to average temperatures immediately post-anthesis (r = –0.81), and therefore larger in early flowering material (>30 days at some sites). Harvest index was highest in Indian and Ethiopian germplasm, whereas crop height was greatest in Australian and Mediterranean accessions. Some consistently high yielding genotypes new to the Australian breeding program were identified (ICCV 10, BG 362), and the existing cultivar Lasseter was also confirmed to be very productive.


Author(s):  
Shivashish Verma ◽  
Nagaraju Madala ◽  
Sai kumar Halavath ◽  
B. G. Suresh ◽  
G. R. Lavanya

Author(s):  
K. Prabhakar ◽  
V. Sumathi ◽  
T. Giridhar Krishna ◽  
P. Sudhakar ◽  
S. Jaffar Basha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document