scholarly journals Diversity and Plant Growth-Promoting Ability of Endophytic, Halotolerant Bacteria Associated with Tetragonia tetragonioides (Pall.) Kuntze

Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 49
Author(s):  
Dilfuza Egamberdieva ◽  
Jakhongir Alimov ◽  
Vyacheslav Shurigin ◽  
Burak Alaylar ◽  
Stephan Wirth ◽  
...  

The diversity of salt-tolerant cultivable endophytic bacteria associated with the halophyte New Zealand spinach (Tetragonia tetragonioides (Pall.) Kuntze) was studied, and their plant beneficial properties were evaluated. The bacteria isolated from leaves and roots belonged to Agrobacterium, Stenotrophomonas, Bacillus, Brevibacterium, Pseudomonas, Streptomyces, Pseudarthrobacter, Raoultella, Curtobacterium, and Pantoea. Isolates exhibited plant growth-promoting traits, including the production of a phytohormone (indole 3-acetic-acid), cell wall degrading enzymes, and hydrogen cyanide production. Furthermore, antifungal activity against the plant pathogenic fungi Fusarium solani, F. oxysporum, and Verticillium dahliae was detected. Ten out of twenty bacterial isolates were able to synthesize ACC deaminase, which plays a vital role in decreasing ethylene levels in plants. Regardless of the origin of isolated bacteria, root or leaf tissue, they stimulated plant root and shoot growth under 200 mM NaCl conditions. Our study suggests that halophytes such as New Zealand spinach are a promising source for isolating halotolerant plant-beneficial bacteria, which can be considered as potentially efficient biofertilizers in the bioremediation of salt-affected soils.

Author(s):  
J. Monk ◽  
E. Gerard ◽  
S. Young ◽  
K. Widdup ◽  
M. O'Callaghan

Tall fescue (Festuca arundinacea) is a useful alternative to ryegrass in New Zealand pasture but it is slow to establish. Naturally occurring beneficial bacteria in the rhizosphere can improve plant growth and health through a variety of direct and indirect mechanisms. Keywords: rhizosphere, endorhiza, auxin, siderophore, P-solubilisation


2021 ◽  
Vol 12 (2) ◽  
pp. 1143-1150
Author(s):  
Lavanya J ◽  
Chanthosh S ◽  
Reshma Shrii ◽  
Viknesh V ◽  
Deepika S ◽  
...  

The study was aimed to find an alternate approach for chemicals used in agriculture to avoid microbial infections. Fungal pathogens cause different types of plant diseases and affect a majority of edible crops by destroying the tissues of the plant in a direct or indirect mechanism. So, an alternative approach led to the development of biocontrol agents using endophytic  bacteria. A total of 8 endophytic bacteria were isolated from the root, stem, and leaves of radish (Raphanus sativus). The antagonistic activity of these bacteria against the 2 isolated plant pathogenic fungi was determined in vitro. Two out of eight bacteria showed more than 50% inhibitory activity against one fungus, were further characterized using the 16s rRNA sequencing method. On the basis of the phylogenetic tree of the 16s rRNA method, the endophytic bacterial samples were identified as Tonsilliphilus suis  and Exiguobacterium aurantiacum against plant pathogenic Aspergillus flavus  isolated from Raphanus sativus, which makes them highly suitable as an alternative for chemical fertilizers to provide resistance to plant pathogenic fungi. The cell wall degrading activities such as protease activity, amylase activity, and plant growth-promoting properties such as Hydrogen cyanide (HCN), Indole acetic acid (IAA), ammonia production of these endophytic bacteria were evaluated. The results show that T. suis  is the most effective strain for radish growth development.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Wenna Shan ◽  
Ying Zhou ◽  
Huihui Liu ◽  
Xiaomin Yu

Endophytic actinomycetes are a promising source of novel metabolites with diverse biological activities. Tea plants (Camellia sinensis) produce arsenals of phytochemicals, which are linked to a number of medicinal and nutritional properties. However, a systematic investigation into the abundance and diversity of cultivated actinomycetes residing in tea plants has not been performed. In this study, a total of 46 actinobacteria were recovered from leaf, stem, and root samples of 15 tea cultivars collected in Fujian province, China. Their abundance and diversity were shown to be influenced by both the genotypes and tissue types of tea plants. Based on 16S RNA sequence analysis, these isolates were taxonomically grouped into 11 families and 13 genera, includingStreptomyces,Actinomadura,Kribbella,Nocardia,Kytococcus,Leifsonia,Microbacterium,Micromonospora,Mobilicoccus,Mycobacterium,Nocardiopsis,Piscicoccus, andPseudonocardia. The genusStreptomyceswas most prevalent whereas rare genera,MobilicoccusandPiscicoccus, were reported for the first time to occur as plant endophytes. PCR screening of polyketide synthase genes (PKS-I and PKS-II) and nonribosomal peptide synthetase genes (NRPS), along with antimicrobial assays against a set of bacterial and fungal pathogens, showed that endophytic actinomycetes associated with tea plants have a high potential for producing antimicrobial metabolites. Furthermore, indole acetic acid (IAA) production and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activities were recorded in 93.5% and 21.7% of all isolates, respectively. Overall, these results indicate that endophytic actinomycetes from tea plants represent a valuable source of bioactive metabolites with antibacterial, antifungal, and plant-growth-promoting properties.


Author(s):  
Shamal S. Kumar ◽  
Ananta G. Mahale ◽  
Md. Mifta Faizullah ◽  
J. Radha Krishna ◽  
Tharun K. Channa

Water scarcity is known as a major stumbling block towards crop development and its output all over the world. Certain free-living bacterial strains have been found near the plant root zones which have shown to improve resistance of plants towards water stress. Despite availability of basic nutrients, drought an abiotic factor substantially inhibits growth, development and yield of crops by causing an increase in ethylene levels. It is a good idea to incorporate the use of a management tool which is the utilization of plant growth-promoting rhizobacteria to help several crops manage drought conditions. Drought stress in crops can be alleviated by reducing ethylene synthesis, exopolysaccharide, osmoregulation, Indole-3-acetic acid and aggregation with the ACC deaminase-containing plant growth-promoting rhizobacteria. Inoculating pathogens like root rot (Macrophomina phaseolina) affected plant with Pseudomonas fluorescens strain TDK1 with ACC deaminase function improves drought stress. Using plant growth-promoting rhizobacteria to mitigate the negative imbibes of drought in most crops is a good idea. Several studies have been carried out on plant growth-promoting rhizobacteria, as its inoculation not only manages drought related conditions but increases root hair growth and lateral root, which assist in increased water and nutrient uptake. It limits ethylene supply, alternatively increases plant root growth by hydrolyzing 1-aminocyclopropane-1-carboxylic acid (ACC). This review will give us a perspective on the importance of plant growth-promoting rhizobacteria, as it is one of the efficient tools that helps manage drought stress on several crops.


2021 ◽  
Vol 15 (1) ◽  
pp. 428-436
Author(s):  
Devendra Jain ◽  
Gunnjeet Kaur ◽  
Ali Asger Bhojiya ◽  
Surya Chauhan ◽  
S.K. Khandelwal ◽  
...  

The present research was conducted to characterize the indigenous plant growth promoting (PGP) Azotobacter strains isolated from plant root interface of semi-arid regions of Rajasthan (India) and to study their potential to be used as bio-fertilizers. A total of 172 Azotobacter strains were isolated, purified and based on the morphological test i.e. gram staining, pigmentation, cyst formation, fluorescence etc, broadly classified as Azotobacter. Further the secluded strains were examined for biochemical analysis and plant growth promoting characters. All the isolates showed different biochemical characteristics and significant PGP traits. IAA activity of the Azotobacter strains ranges from 54.5-6000 µg/mL. Ammonia, HCN and siderophore was produced by 92.4%, 78.4% and 80.23% of the total isolates respectively. Solubilization of phosphate was observed in 97.6% of the total isolates. These strains were also characterized for qualitative and quantitative N2 fixation abilities and the result indicated that 114 strains showed positive results on nitrogen free malate agar medium (NFMM) containing bromothymol blue (BTB) and able to produce 18.93-475.6 N-moles C2H4 mg protein−1 h−1 of acetylene reduced by Azotobacter strains. In vitro pot studies revealed that the selected native Azotobacter strains having high ARA results significantly increase the plant growth characters. Shoot length, root length, root number and chlorophyll content and leaf number increases by 45.62%, 17.60%, 97.49%, 49.69% and 27.83% respectively in pot inoculated with AZO23-3 as compared to control. These effective strains can further be utilized for development of effective microbial formulations.


2021 ◽  
Vol 6 (2) ◽  
pp. 255-263
Author(s):  
Indah Juwita Sari ◽  
Indria Wahyuni ◽  
Rida Oktorida Khastini ◽  
Ewi Awaliyati ◽  
Andriana Susilowati ◽  
...  

Plant Growth Promoting Bacteria Rhizobacteria (PGPR) is one of the potential bacteria to enhance of Capsicum annuum through inhabitation the growth of pathogenic fungi. This study aimed to characterize PGPR in chili plants (Capsicum annuum). PGPR was isolated from the soil habitat of the red chili plant in Cilegon, Indonesia. Screening was then carried out with the dual culture method on Petri dishes and tested through in vivo method on the red chili plant. The selected bacteria were characterized morphologically, biochemically, and physiologically. The results revealed that there were 14 single isolates of bacteria from the roots of the red chili plants. The five single bacterial isolates, namely Azostobacter, Azospirillum, Pseudomonas, Serratia, and Beijerinckia have good potential as PGPR based on multiple culture screening by producing clear zones and positively effect the growth of chili plants.


2014 ◽  
Vol 27 (7) ◽  
pp. 655-663 ◽  
Author(s):  
Shan-Shan Xie ◽  
Hui-Jun Wu ◽  
Hao-Yu Zang ◽  
Li-Ming Wu ◽  
Qing-Qing Zhu ◽  
...  

The interaction between plants and plant-growth-promoting rhizobacteria (PGPR) is a complex, reciprocal process. On the one hand, plant compounds such as carbohydrates and amino acids serve as energy sources for PGPR. On the other hand, PGPR promote plant growth by synthesizing plant hormones and increasing mineral availability in the soil. Here, we evaluated the growth-promoting activity of Bacillus subtilis OKB105 and identified genes associated with this activity. The genes yecA (encoding a putative amino acid/polyamine permease) and speB (encoding agmatinase) are involved in the secretion or synthesis of polyamine in B. subtilis OKB105. Disruption of either gene abolished the growth-promoting activity of the bacterium, which was restored when polyamine synthesis was complemented. Moreover, high-performance liquid chromatography analysis of culture filtrates of OKB105 and its derivatives demonstrated that spermidine, a common polyamine, is the pivotal plant-growth-promoting compound. In addition, real-time polymerase chain reaction analysis revealed that treatment with B. subtilis OKB105 induced expansin gene (Nt-EXPA1 and Nt-EXPA2) expression and inhibited the expression of the ethylene biosynthesis gene ACO1. Furthermore, enzyme-linked immunosorbent assay analysis showed that the ethylene content in plant root cells decreased in response to spermidine produced by OKB105. Therefore, during plant interactions, OKB105 may produce and secrete spermidine, which induces expansin production and lowers ethylene levels.


Sign in / Sign up

Export Citation Format

Share Document