scholarly journals lpa1-5525: A New lpa1 Mutant Isolated in a Mutagenized Population by a Novel Non-Disrupting Screening Method

Plants ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 209 ◽  
Author(s):  
Giulia Borlini ◽  
Cesare Rovera ◽  
Michela Landoni ◽  
Elena Cassani ◽  
Roberto Pilu

Phytic acid, or myo-inositol 1,2,3,4,5,6-hexakisphosphate, is the main storage form of phosphorus in plants. It is localized in seeds, deposited as mixed salts of mineral cations in protein storage vacuoles; during germination, it is hydrolyzed by phytases to make available P together with all the other cations needed for seed germination. When seeds are used as food or feed, phytic acid and the bound cations are poorly bioavailable for human and monogastric livestock due to their lack of phytase activity. Therefore, reducing the amount of phytic acid is one strategy in breeding programs aimed to improve the nutritional properties of major crops. In this work, we present data on the isolation of a new maize (Zea mays L.) low phytic acid 1 (lpa1) mutant allele obtained by transposon tagging mutagenesis with the Ac element. We describe the generation of the mutagenized population and the screening to isolate new lpa1 mutants. In particular, we developed a fast, cheap and non-disrupting screening method based on the different density of lpa1 seed compared to the wild type. This assay allowed the isolation of the lpa1-5525 mutant characterized by a new mutation in the lpa1 locus associated with a lower amount of phytic phosphorus in the seeds in comparison with the wild type.

2015 ◽  
Vol 10 (2) ◽  
pp. 1934578X1501000
Author(s):  
Ken Tanaka ◽  
Masanori Arita ◽  
Donghan Li ◽  
Naoaki Ono ◽  
Yasuhiro Tezuka ◽  
...  

Turmeric, the rhizome of Curcuma longa, has a long history of use as a spice and also as a traditional medicine in many Asian countries. To reveal unique morphological features of a newly registered Curcuma cultivar, C longa cv. Okinawa Ougon (Ougon), non-targeted LC-MS and GC-MS analyses were conducted. The analysis revealed its distinctive chemical properties: lower amount of phytic acid and inorganic metals such as Fe, Mn, and Al, as well as higher concentrations of reduced derivatives of curcuminoids, such as dihydrobisdemethoxycurcumin, tetrahydrobisdemethoxycurcumin, dihydrodemethoxycurcumin, and tetrahydrodemethoxycurcumin. In addition, germacrane-type sesquiterpenes were almost absent although α-humulene and β-caryophyllene, generated by the same biosynthetic route, were present. Presumably the alternation of the metal ion content, serving as a cofactor of sesquiterpene synthase, modulates the resulting variation of the sesquiterpenes. In summary, the cultivar Ougon is considered a promising candidate for functional food additives.


Agriculture ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 516
Author(s):  
Benjamin J. Averitt ◽  
Gregory E. Welbaum ◽  
Xiaoying Li ◽  
Elizabeth Prenger ◽  
Jun Qin ◽  
...  

Low phytic acid (LPA) soybean [Glycine max (L.) Merr] genotypes reduce indigestible PA in soybean seeds in order to improve feeding efficiency of mono- and agastric animals, but often exhibit low field emergence, resulting in reduced yield. In this study, four LPA soybean varieties with two different genetic backgrounds were studied to assess their emergence and yield characters under 12 seed treatment combinations including two broad-spectrum, preplant fungicides (i.e., ApronMaxx (mefenoxam: (R,S)-2-[(2,6-dimethylphenyl)-methoxyacetylamino]-propionic acid methyl ester; fludioxonil: 4-(2,2-difluoro-1,3-benzodioxol-4-yl)-1H-pyrrole-3-carbonitrile) and Rancona Summit (ipconazole: 2-[(4-chlorophenyl)methyl]-5-(1-methylethyl)-1-(1H-1,2,4-triazol-1-ylmethyl) cyclopentanol; metalaxyl: N-(methooxyacetyl)-N-(2,6-xylyl)-DL-alaninate)), osmotic priming, and MicroCel-E coating. Two normal-PA (NPA) varieties served as controls. Both irrigated and non-irrigated plots were planted in Blacksburg and Orange, Virginia, USA in 2014 and 2015. Results revealed that three seed treatments (fungicides Rancona Summit and ApronMaxx, as well as Priming + Rancona) significantly improved field emergence by 6.4–11.6% across all genotypes, compared with untreated seeds. Seed priming was negatively associated with emergence across LPA genotypes. Seed treatments did not increase the yield of any genotype. LPA genotypes containing mips or lpa1/lpa2 mutations, produced satisfactory emergence similar to NPA under certain soil and environmental conditions due to the interaction of genotype and environment. Effective seed treatments applied to LPA soybeans along with the successful development of LPA germplasm by soybean breeding programs, will increase use of LPA varieties by commercial soybean growers, ultimately improving animal nutrition while easing environmental impact.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 23
Author(s):  
Meng Jiang ◽  
Yanhua Liu ◽  
Ruiqing Li ◽  
Shan Li ◽  
Yuanyuan Tan ◽  
...  

OsIPK1 encodes inositol 1,3,4,5,6-pentakisphosphate 2-kinase, which catalyzes the conversion of myo-inositol-1,3,4,5,6-pentakisphosphate to myo-inositol-1,2,3,4,5,6-hexakisphosphate (IP6) in rice. By clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas9)-mediated mutagenesis in the 3rd exon of the gene, three OsIPK1 mutations, i.e., osipk1_1 (a 33-nt deletion), osipk1_2 (a 1-nt deletion), and osipk1_3 (a 2-nt deletion) were identified in T0 plants of the rice line Xidao #1 (wild type, WT). A transfer DNA free line with the homozygous osipk1_1 mutation was developed; however, no homozygous mutant lines could be developed for the other two mutations. The comparative assay showed that the osipk1_1 mutant line had a significantly lower level of phytic acid (PA, IP6; −19.5%) in rice grain and agronomic traits comparable to the WT. However, the osipk1_1 mutant was more tolerant to salt and drought stresses than the WT, with significantly lower levels of inositol triphosphate (IP3), reactive oxygen species (ROS) and induced IP6, and higher activities of antioxidant enzymes in seedlings subjected to these stresses. Further analyses showed that the transcription of stress response genes was significantly upregulated in the osipk1_1 mutant under stress. Thus, the low phytic acid mutant osipk1_1 should have potential applications in rice breeding and production.


2005 ◽  
Vol 83 (12) ◽  
pp. 1599-1607 ◽  
Author(s):  
Charlie Joyce ◽  
Andrea Deneau ◽  
Kevin Peterson ◽  
Irene Ockenden ◽  
Victor Raboy ◽  
...  

Concentrations of P, phytic acid (myo-inositol hexakisphosphate, IP6), and other mineral storage elements were studied in wild-type and low phytic acid (lpa) genotype Js-12-LPA wheat (Triticum aestivum L.) embryos and rest-of-grain fractions. Environmental scanning electron microscopy images revealed a decreased average size and an increased number of aleurone layer globoids in lpa grains compared with the wild type. Energy-dispersive X-ray analyses of unfixed aleurone layer and scutellum cell cytoplasm revealed mainly C, O, P, K, and Mg in both grain types. The starchy endosperm contained virtually no P, K, or Mg, demonstrating no shift of mineral nutrients to that compartment. Scanning transmission electron microscopy – energy-dispersive X-ray analyses of scutellum and aleurone layer globoids in both genotypes revealed that P, K, and Mg were the main mineral nutrients in globoids with low amounts of Ca, Fe, and Zn. Traces of Mn were only in scutellum globoids. Total P was similar between genotypes for the rest-of-grain fractions, which are 97% of grain mass. The main inositol phosphate was IP6, but a small amount of IP5 was present. Both lpa grain fractions exhibited major reductions in IP6 compared with the wild type and a threefold increase in inorganic P. The concentration of K decreased in both fractions, while Ca increased 25% in the Js-12-LPA rest-of-grain compared with the wild type. The lack of large differences in mineral concentration and distribution between the wild type and Js-12-LPA indicates that there is no direct role of localization of IP6 synthesis in mineral distribution.


2004 ◽  
Vol 14 (2) ◽  
pp. 109-116 ◽  
Author(s):  
John N.A. Lott ◽  
Jessica C. Liu ◽  
Irene Ockenden ◽  
Michael Truax ◽  
John N.A. Lott

Mineral nutrient stores in cereal grains are mainly phytate, a salt of the phosphorus-rich compound phytic acid. Quantitative measures of total phosphorus, phytic acid-phosphorus, potassium, magnesium, calcium, iron, manganese and zinc were obtained for whole grains, embryos and rest-of-grain portions of cv. Kaybonnet rice (wild type) (Oryza sativa L.) and a low phytic acid (lpa1–1) mutant strain with a 45% reduction in phytic acid. P, K and Mg were present in higher amounts than Ca, Mn, Fe and Zn in both grain types. Whole-grain amounts of total P, Ca, Mn and phytic acid-phosphorus were lower in whole lpa1–1 grains than in wild-type grains; K, Mg and Fe amounts were similar, and Zn was higher. Embryos, which comprise 3.5% or less of grain dry weight, were comparatively rich in all measured elements. The lpa1–1 mutation influenced the phytic acid content of the embryo more than that of the aleurone layer. Aleurone-layer cells of wild-type grains had many phosphorus-rich globoids 2μm or larger in diameter, whereas lpa1–1 grains contained more of the smaller globoids. The reduction in globoid size was consistent with the reduction in phytate. Energy-dispersive X-ray analysis of both aleurone-layer cells and sections of globoids in aleurone-layer cells revealed that P, K and Mg were the main mineral nutrient elements present in both grain types; traces of Ca, Mn, Fe or Zn were present. Starchy endosperm cells contained virtually no P, K or Mg, whereas scutellum cells were rich in these elements.


Crop Science ◽  
2004 ◽  
Vol 44 (1) ◽  
pp. 363 ◽  
Author(s):  
J.N. Rutger ◽  
V. Raboy ◽  
K.A.K. Moldenhauer ◽  
R.J. Bryant ◽  
F.N. Lee ◽  
...  
Keyword(s):  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Laura Navone ◽  
Thomas Vogl ◽  
Pawarisa Luangthongkam ◽  
Jo-Anne Blinco ◽  
Carlos H. Luna-Flores ◽  
...  

Abstract Background Phytases are widely used commercially as dietary supplements for swine and poultry to increase the digestibility of phytic acid. Enzyme development has focused on increasing thermostability to withstand the high temperatures during industrial steam pelleting. Increasing thermostability often reduces activity at gut temperatures and there remains a demand for improved phyases for a growing market. Results In this work, we present a thermostable variant of the E. coli AppA phytase, ApV1, that contains an extra non-consecutive disulfide bond. Detailed biochemical characterisation of ApV1 showed similar activity to the wild type, with no statistical differences in kcat and KM for phytic acid or in the pH and temperature activity optima. Yet, it retained approximately 50% activity after incubations for 20 min at 65, 75 and 85 °C compared to almost full inactivation of the wild-type enzyme. Production of ApV1 in Pichia pastoris (Komagataella phaffi) was much lower than the wild-type enzyme due to the presence of the extra non-consecutive disulfide bond. Production bottlenecks were explored using bidirectional promoters for co-expression of folding chaperones. Co-expression of protein disulfide bond isomerase (Pdi) increased production of ApV1 by ~ 12-fold compared to expression without this folding catalyst and restored yields to similar levels seen with the wild-type enzyme. Conclusions Overall, the results show that protein engineering for enhanced enzymatic properties like thermostability may result in folding complexity and decreased production in microbial systems. Hence parallel development of improved production strains is imperative to achieve the desirable levels of recombinant protein for industrial processes.


Heliyon ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. e07912
Author(s):  
Mohammed A.E. Bakhite ◽  
Nkanyiso J. Sithole ◽  
Lembe S. Magwaza ◽  
Alfred O. Odindo ◽  
Shirly T. Magwaza ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document