scholarly journals Influence of Citrus Scion/Rootstock Genotypes on Arbuscular Mycorrhizal Community Composition under Controlled Environment Condition

Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 901
Author(s):  
Fang Song ◽  
Fuxi Bai ◽  
Juanjuan Wang ◽  
Liming Wu ◽  
Yingchun Jiang ◽  
...  

Citrus is vegetatively propagated by grafting for commercial production, and most rootstock cultivars of citrus have scarce root hairs, thus heavily relying on mutualistic symbiosis with arbuscular mycorrhizal fungi (AMF) for mineral nutrient uptake. However, the AMF community composition, and its differences under different citrus scion/rootstock genotypes, were largely unknown. In this study, we investigated the citrus root-associated AMF diversity and richness, and assessed the influence of citrus scion/rootstock genotypes on the AMF community composition in a controlled condition, in order to exclude interferences from environmental factors and agricultural practices. As a result, a total of 613,408 Glomeromycota tags were detected in the citrus roots, and 46 AMF species were annotated against the MAARJAM database. Of these, 39 species belonged to Glomus, indicating a dominant role of the Glomus AMF in the symbiosis with citrus. PCoA analysis indicated that the AMF community’s composition was significantly impacted by both citrus scion and rootstock genotypes, but total samples were clustered according to rootstock genotype rather than scion genotype. In addition, AMF α diversity was significantly affected merely by rootstock genotype. Thus, rootstock genotype might exert a greater impact on the AMF community than scion genotype. Taken together, this study provides a comprehensive insight into the AMF community in juvenile citrus plants, and reveals the important effects of citrus genotype on AMF community composition.

2021 ◽  
Author(s):  
Maede Faghihinia ◽  
Yi Zou ◽  
Yongfei Bai ◽  
Martin Dudáš ◽  
Rob Marrs ◽  
...  

Abstract Arbuscular mycorrhizal fungi (AMF) are the predominant type of mycorrhizal fungi in roots and rhizosphere soil of grass species worldwide. Grasslands are currently experiencing increasing grazing pressure, but it is not yet clear how grazing intensity and host plant grazing preference by large herbivores interact with soil- and root-associated AMF communities. Here, we tested whether the diversity and community composition of AMF in the roots and rhizosphere soil of two dominant perennial grasses grazed differently by livestock change in response to grazing intensity. We conducted a study in a long-term field experiment in which seven levels of field-manipulated grazing intensities were maintained for 13 years in a typical steppe grassland in northern China. We extracted DNA from the roots and rhizosphere soil of two dominant grasses, Leymus chinense (Trin.) Tzvel. and Stipa grandis P. Smirn, with contrasting grazing preference by sheep. AMF DNA from root and soil samples were then subjected to molecular analysis. Our results showed that AMF α-diversity (richness) at the virtual taxa (VT) level varied as a function of grazing intensity. Different VTs showed completely different responses along the gradient, one increasing, one decreasing and others showing no response. Glomeraceae was the most abundant AMF family along the grazing gradient, which fits well with the theory of disturbance tolerance of this group. In addition, sheep grazing preference for host plants did not explain a considerable variation in AMF α-diversity. However, the two grass species exhibited different community composition in their roots and rhizosphere soils. Roots exhibited a lower α-diversity and higher β-diversity within the AMF community than soils. Overall, our results suggest that long-term grazing intensity might have changed the abundance of functionally-diverse AMF taxa in favor of those with disturbance-tolerant traits. We suggest our results would be useful in informing the choice of mycorrhizal fungi indicator variables when assessing the impacts of grassland management choices on grassland ecosystem functioning.


OENO One ◽  
2016 ◽  
Vol 50 (1) ◽  
pp. 1 ◽  
Author(s):  
Marie-Lara Bouffaud ◽  
Eric Bernaud ◽  
Annie Colombet ◽  
Diederik Van Tuinen ◽  
Daniel Wipf ◽  
...  

<p style="text-align: justify;"><strong>Aim</strong>: To improve knowledge of arbuscular fungal communities for a sustainable management in vineyards.</p><p style="text-align: justify;"><strong>Methods and results</strong>: In 16 plots across Burgundy under contrasted soil properties and agricultural practices, we assessed arbuscular mycorrhizal fungal (AMF) diversity in vine roots, using pyrosequencing of ribosomal Internal Transcribed Spacers (ITS). AMF sequences could be retrieved from all plots across Burgundy, both in organic and in conventional vineyards with high chemical inputs. Sequences from the survey were almost exclusively affiliated to molecular taxa in the Glomerales, including six “core species” found in all plots, corresponding to 77% of all sequences, suggesting a relatively low species diversity in vine roots. A large part of the molecular taxa had no close similarity to previously-reported sequences.</p><p style="text-align: justify;"><strong>Conclusion</strong>: AMF diversity observed in vine roots was relatively low and a significant proportion of molecular taxa shared between the sites. Nevertheless, some differences in the AMF community composition were observed between the plots.</p><strong>Significance and impact of the study</strong>: This is the first large-scale study of AMF diversity in French vineyards using high-throughput sequencing, which will contribute to a better understanding of ecology of these fungi in vine roots, thus providing essential knowledge for future applications in sustainable agriculture in vineyards


2021 ◽  
Author(s):  
Zhouying Xu ◽  
Yichao Lv ◽  
Yinghe Jiang ◽  
Xiaodong Luo ◽  
Xuelin Gui ◽  
...  

Abstract An increasing number of investigations have demonstrated the universal existence of arbuscular mycorrhizal fungi (AMF) in aquatic ecosystems. However, little is known about the accurate distribution and functions of AMF inhabiting aquatic ecosystems, especially ecological floating bed (EFB) which was constructed for the remediation of polluted waterbodies.In this study, we collected root samples of Canna generalis, Cyperus alternifolius and Eichhornia crassipes from three EFBs floating on two eutrophic lakes in Wuhan, China, to investigate the resources and distribution of AMF in EFBs using Illumina Mi-seq technology. A total of 229 operational taxonomic units (OTUs) and 21 taxon from 348,799 Glomeromycota sequences were detected. Glomus was the most dominant AMF in the three EFBs while the second dominant AMF was related to Acaulospora. Different aquatic plant species exhibited varying degrees of AMF colonization (3.83%~71%), diversity (6~103 OTUs, 3~15 virtual taxa) and abundance (14~57551 sequences). Low AMF abundance but relatively high AMF diversity were found in C. alternifolius which is usually considered as non-mycorrhizal, demonstrating the high accuracy of Illumina sequencing. In addition, results from this study suggested a lognormal species abundance distribution was observed across AMF taxa in the three plant species, and the AMF community composition was closely related to pH, nitrogen and phosphorus.Overall, our data demonstrated that diverse and abundant AMF communities were living in EFBs, and the AMF community composition was closely related to the water quality of eutrophic lakes treated by EFBs, providing potential possibility for the applications of AMF in plant-based bioremediation of wastewater.


Forests ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 273 ◽  
Author(s):  
Xuelei Xu ◽  
Xinjie Wang ◽  
Michelle Cleary ◽  
Ping Wang ◽  
Nini Lu ◽  
...  

Background and Objectives: Arbuscular mycorrhizal fungi (AMF) play a crucial role in individual plant capability and whole ecosystem sustainability. Chinese fir, one of the most widely planted tree species in southern China, forms associations with AMF. However, it is still unclear what impacts thinning management applied to Chinese fir plantations has on the structure and diversity of soil AMF communities. This research attempts to bridge this knowledge gap. Materials and Methods: A thinning experiment was designed on different slope positions in Chinese fir plantations to examine the impacts of slope position and thinning intensity on colonization, diversity, and community composition of AMF. Results: Our research showed that the altitudinal slope position had significant effects on colonization, diversity, and community composition of AMF in Chinese fir plantations. In addition, the interaction between slope position and thinning intensity had significant effects on AMF diversity. Colonization by AMF on the lower slope position was significantly higher than on the upper slope position, while AMF diversity on the upper slope position was higher than on the middle and lower slope positions. Glomus was the most abundant genus in all slope positions, especially on the middle and lower slope positions. The relative abundance of Diversispora was significantly different among slope positions with absolute dominance on the upper slope position. Scutellospora was uniquely found on the upper slope position. Furthermore, soil Mg and Mn contents and soil temperature positively affected AMF community composition at the operational taxonomic unit (OTU) level. Conclusions: These findings suggested that slope position should be considered in the management of Chinese fir plantations. Furthermore, both chemical fertilization and AMF augmentation should be undertaken on upper hill slope positions as part of sustainable management practices for Chinese fir plantations.


Agriculture ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 866
Author(s):  
Wenying Yang ◽  
Mengjie Zhang ◽  
Fengbin Song ◽  
Shengqun Liu ◽  
Xiangnan Li ◽  
...  

The black soil region of northeast China is a critical production base for commercial grain in China. Arbuscular mycorrhizal fungi (AMF) are widely present in terrestrial ecosystems and play a vital role in ecosystem stability. Here, we investigated the diversity and composition of AMF communities in farmland and woodland from 20 sites in the black soil region of northeast China using Illumina MiSeq sequencing. The sequences were classified into 1 phylum, 1 class, 4 orders, 8 families, and 11 genera. Glomerales and Paraglomerales were observed as the most abundant order in farmland and woodland, respectively, and also belonged to abundant orders of the black soil region in northeast China, accounting for more than 90% of the total. Furthermore, Paraglomus, Claroideoglomus, and Glomus were the most abundant genera. Canonical correspondence analysis demonstrated the effect of soil pH, invertase, nitrogen, phosphorus, and soil organic carbon (SOC) contents on AMF community composition. Results from the correlation analysis revealed a reduction in AMF diversity with increases in SOC and phosphorus contents. These findings suggest AMF community composition varied with land use type (farmland and woodland), and provide a basis for protecting and utilizing AMF resources in the black soil region of northeast China.


2019 ◽  
Author(s):  
Coline Deveautour ◽  
Sally Power ◽  
Kirk Barnett ◽  
Raul Ochoa-Hueso ◽  
Suzanne Donn ◽  
...  

Climate models project overall a reduction in rainfall amounts and shifts in the timing of rainfall events in mid-latitudes and sub-tropical dry regions, which threatens the productivity and diversity of grasslands. Arbuscular mycorrhizal fungi may help plants to cope with expected changes but may also be impacted by changing rainfall, either via the direct effects of low soil moisture on survival and function or indirectly via changes in the plant community. In an Australian mesic grassland (former pasture) system, we characterised plant and arbuscular mycorrhizal (AM) fungal communities every six months for nearly four years to two altered rainfall regimes: i) ambient, ii) rainfall reduced by 50% relative to ambient over the entire year and iii) total summer rainfall exclusion. Using Illumina sequencing, we assessed the response of AM fungal communities sampled from contrasting rainfall treatments and evaluated whether variation in AM fungal communities was associated with variation in plant community richness and composition. We found that rainfall reduction influenced the fungal communities, with the nature of the response depending on the type of manipulation, but that consistent results were only observed after more than two years of rainfall manipulation. We observed significant co-associations between plant and AM fungal communities on multiple dates. Predictive co-correspondence analyses indicated more support for the hypothesis that fungal community composition influenced plant community composition than vice versa. However, we found no evidence that altered rainfall regimes were leading to distinct co-associations between plants and AM fungi. Overall, our results provide evidence that grassland plant communities are intricately tied to variation in AM fungal communities. However, in this system, plant responses to climate change may not be directly related to impacts of altered rainfall regimes on AM fungal communities. Our study shows that AM fungal communities respond to changes in rainfall but that this effect was not immediate. The AM fungal community may influence the composition of the plant community. However, our results suggest that plant responses to altered rainfall regimes at our site may not be resulting via changes in the AM fungal communities.


2021 ◽  
Author(s):  
Sally Diatta ◽  
Hassna Mboup-Founoune ◽  
Sidy Diakhaté ◽  
Diégane Diouf

&lt;p&gt;Our planet is marked by significant climatic variations, particularly with the warming of temperatures and the variation in rainfall. In sub-Saharan Africa, the impacts of climate change are more pronounced because agriculture is highly dependent on climate, hence its vulnerability to climate variability (Vanluwe et al., 2011). In the context of changing environmental conditions, the use of innovative agricultural practices to contribute to plant adaptation is necessary to support food security challenges. Agroecological practices to improve crop yields and sustainable soil fertility management. Soil is the main reservoir of biodiversity as it hosts a very high diversity of interacting living species, which can be distinguished according to their size, macrofauna, mesofauna and microorganisms that constitute a particularly important component of soil (Brady and Weil, 2002), particularly for the provision of ecosystem services to humans. This work is therefore interested in studying the contribution of arbuscular mycorrhizal fungi (AMF) to the growth of millet (&lt;em&gt;Pennisetum glaucum&lt;/em&gt;) under warmer temperature conditions and the behaviour of microbial community in soil of millet growing.&lt;/p&gt;&lt;p&gt;Millet is grown in a plant climate chamber and inoculated with a selected mycorrhizal strain.&amp;#160; These millet growing conditions were carried out in two different temperatures: 32&amp;#176;C (normal temperature) and 37&amp;#176;C (warmer temperature).&lt;/p&gt;&lt;p&gt;The results showed that in conditions of warmer temperature the inoculation induced a significant vegetative growth of millet even with a low intensity of mycorrhization and so it improves microbial nutrient mineralization mediate vegetation growth.&lt;/p&gt;&lt;p&gt;In soil of millet growing, a significant increase in microbial biomass with 42.7 in warmer temperature condition compared to control temperature 16.7. Results of DGGE shows also a soil abundance and SMB diversity of the total fungal community was noted under warmer temperature condition.&lt;/p&gt;&lt;p&gt;This study showed that climate variation may affect soil symbiosis but not the potential for promoting plant growth of fungi. The use of arbuscular mycorrhizal fungi on the one hand as a biofertilizer can be an alternative in the context of reducing chemical inputs in agriculture and developing ecologically intensive agriculture (EIA) and on the other hand an adaptive practice&amp;#160; to apprehend the predicted climate changes.&lt;/p&gt;


Agronomy ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 127 ◽  
Author(s):  
Arjun Kafle ◽  
Kevin Cope ◽  
Rachel Raths ◽  
Jaya Krishna Yakha ◽  
Senthil Subramanian ◽  
...  

Phosphorus is an essential macronutrient required for plant growth and development. It is central to many biological processes, including nucleic acid synthesis, respiration, and enzymatic activity. However, the strong adsorption of phosphorus by minerals in the soil decreases its availability to plants, thus reducing the productivity of agricultural and forestry ecosystems. This has resulted in a complete dependence on non-renewable chemical fertilizers that are environmentally damaging. Alternative strategies must be identified and implemented to help crops acquire phosphorus more sustainably. In this review, we highlight recent advances in our understanding and utilization of soil microbes to both solubilize inorganic phosphate from insoluble forms and allocate it directly to crop plants. Specifically, we focus on arbuscular mycorrhizal fungi, ectomycorrhizal fungi, and phosphate-solubilizing bacteria. Each of these play a major role in natural and agroecosystems, and their use as bioinoculants is an increasing trend in agricultural practices.


2021 ◽  
Vol 1 ◽  
Author(s):  
Bhupinder Singh Jatana ◽  
Christopher Kitchens ◽  
Christopher Ray ◽  
Patrick Gerard ◽  
Nishanth Tharayil

Phosphorus (P) is the second most important mineral nutrient for plant growth and plays a vital role in maintaining global food security. The natural phosphorus reserves [phosphate rock (PR)] are declining at an unprecedented rate, which will threaten the sustainable food supply in near future. Rendered animal byproducts such as meat and bone meal (MBM), could serve as a sustainable alternative to meet crop phosphorus demand. Even though nitrogen (N) from MBM is readily mineralized within a few days, &gt;75% of the P in MBM is present as calcium phosphate that is sparingly available to plants. Thus, application of MBM with the aim of meeting crop N demand could result in buildup of P reserves in soil, which necessitates the need to improve the P mobilization from MBM to achieve higher plant P use efficiency. Here, we tested the potential of two microbial inoculum-arbuscular mycorrhizal fungi (AMF) and P solubilizing fungi (Penicillium bilaiae), in improving the mobilization of P from MBM and the subsequent P uptake by maize (Zea mays). Compared to the non-inoculated MBM control, the application of P. bilaiae increased the P mobilization from MBM by more than two-fold and decreased the content of calcium bound P in the soil by 26%. However, despite this mobilization, P. bilaiae did not increase the tissue content of P in maize. On the other hand, AMF inoculation with MBM increased the plant root, shoot biomass, and plant P uptake as compared to non-inoculated control, but did not decrease the calcium bound P fraction of the soil, indicating there was limited P mobilization. The simultaneous application of both AMF and P. bilaiae in association with MBM resulted in the highest tissue P uptake of maize with a concomitant decrease in the calcium bound P in the soil, indicating the complementary functional traits of AMF and P. bilaiae in plant P nutrition from MBM. Arbuscular mycorrhizal fungi inoculation with MBM also increased the plant photosynthesis rate (27%) and root phosphomonoesterase activity (40%), which signifies the AMF associated regulation of plant physiology. Collectively, our results demonstrate that P mobilization and uptake efficiency from MBM could be improved with the combined use of arbuscular mycorrhizal fungi and P. bilaiae.


Sign in / Sign up

Export Citation Format

Share Document