scholarly journals Molecular Detection of Potato Viruses in Bangladesh and Their Phylogenetic Analysis

Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1413
Author(s):  
Mamun-Or Rashid ◽  
Ying Wang ◽  
Cheng-Gui Han

Potato (Solanum tuberosum) is a major food source in the whole world including Bangladesh. Viral diseases are the key constraint for sustainable potato production by reducing both quality and quantity. To determine the present status of eight important potato viruses in Bangladesh, tuber samples were collected from three major potato growing regions (Munshiganj, Jessore and Bogra districts) in January–February 2017 and February 2018. Reverse transcription polymerase chain reaction (RT-PCR) with coat protein (CP)-specific primers were used to amplify CP sequences of the respective viruses, and confirmed by sequencing, which were deposited in the GenBank. Results indicated that the tuber samples were subjected to Potato leafroll virus (PLRV), Potato virus X (PVX), Potato virus Y (PVY), Potato virus S (PVS), Potato virus H (PVH), Potato aucuba mosaic virus (PAMV) and Potato virus M (PVM) infection, whereas mixed infections were very common. Phylogenetic analysis revealed that the PLRV from this study was closely related to a Canadian and a Chinese isolate, respectively; PVX was closely related to a Canadian and a Chinese isolate, respectively; PVY was closely related to a Chinese isolate; PVS was closely related to a Chinese and an Iranian isolate, respectively; PAMV was closely related to a Canadian isolate; PVH was closely related to a Huhhot isolate of China; and PVM was closely related to an Indian and an Iranian isolate, respectively. As far as we know, PAMV in this study is the first report in Bangladesh. These findings will provide a great scope for appropriate virus control strategies to virus free potato production in Bangladesh.

2011 ◽  
Vol 26 (2) ◽  
pp. 117-127
Author(s):  
Jelena Zindovic

The research was carried out, in the period 2002-2004 in order to determine the presence and distribution of potato viruses at 12 different locations and on 9 different potato varieties grown in Montenegro. The research included collecting of samples in seed potato crops and testing of six economically important potato viruses: Potato leaf roll virus (PLRV), Potato virus Y (PVY), Potato virus X (PVX), Potato virus S (PVS), Potato virus A (PVA) i Potato virus M (PVM). Using the direct enzyme-linked immunosorbent assay (DAS-ELISA) and commercial antisera specific for six potato viruses, it was found that PVY was the most frequent virus during the three-year research period. The second frequent virus was PVS, followed by PVA, PLRV, PVM and PVX. Single and mixed infections were detected, and the most prevalent were the single infections of PVY. Also, in the period 2002-2004, PVY had the highest distribution and the number of present viruses was different at different localities and on different potato varieties. Further investigations were related to detailed characterization of the most prevalent virus (PVY), which is at the same time economically the most important one. Serological characterization of PVY was performed utilizing DAS-ELISA kit with commercial monoclonal antibodies specific for detection of the three strain groups of PVY, and the two strain groups - necrotic (PVYN/PVYNTN) and common (PVYO), were identified. Necrotic strains were prevalent in 2002 and 2004, while in 2003 PVYO was the most frequent strain in virus population. The presence of stipple streak strain (PVYC) was not detected in any of the tested samples.


Author(s):  
John Onditi ◽  
Moses Nyongesa ◽  
René van der Vlugt

AbstractIn most developing countries, farmers lack sufficient supply of certified or healthy potato seed tubers. Hence, they often plant their own saved ware potato tubers, a practice that is known to contribute to spread and increase the prevalence of plant viruses. In this study, we proposed options for managing the virus based on the knowledge obtained from surveys of virus prevalence and distribution in potato cultivars grown under such conditions. Potato leaf samples randomly collected from 354 farms in five major potato-growing counties in Kenya were tested for six potato viruses; potato virus Y (PVY), potato leaf roll virus (PLRV), potato virus X (PVX), potato virus M (PVM), potato virus A (PVA) and potato virus S (PVS) through DAS-ELISA. Virus prevalence in the fields was high; 72.9% of the samples were positive for at least one of the six viruses; and 55.9% showed multiple infections. A follow-up survey conducted during three consecutive seasons, in two of the five counties, revealed that virus prevalence fluctuated across seasons. This suggested that updated information on virus prevalence might be of value for designing a virus control strategy. Distribution maps showed the presence of the viruses restricted to specific geographic regions, an indication of where control efforts should be directed. Four cultivars, Sherekea, Shangi, Kenya Karibu and Asante, grown at a high virus-prevalent area, showed low values of average ELISA absorbance (OD), suggest a field resistance to the viruses. This study demonstrated that knowledge of prevalence and distribution may be of value to identify and recommend virus resistant cultivars to replace susceptible ones, especially in the virus hotspot areas.


2007 ◽  
Vol 8 (1) ◽  
pp. 70 ◽  
Author(s):  
Susan J. Lambert ◽  
Frank S. Hay ◽  
Sarah J. Pethybridge ◽  
Calum R. Wilson

The spatial and temporal distribution of Potato virus S (PVS) and Potato virus X (PVX) was studied in two trials within each of four commercial fields of seed potato var. Russet Burbank in Tasmania, Australia. In the first trial (plots) 20 leaflets were collected from each of 49 plots (each approximately 8 m wide by 10 m long), with plots arranged in a 7-×-7 lattice. In the second trial (transects), leaflets were collected at 1-m intervals along seven adjacent, 50-m long rows. The mean incidence of PVS increased during the season by 5.2% in one of four plot trials and 25.5% in one of four transect trials. The mean incidence of PVX increased during the season by 10.1%, in one of two transect trials. Spatial Analysis by Distance IndicEs and ordinary runs analysis detected aggregation of PVS infected plants early in the season in one and two fields respectively, suggesting transmission during seed-cutting or during planting. An increase in PVS incidence mid- to late season in one field was associated with aggregation of PVS along, but not across rows, which may be related to the closer plant spacing within rows and hence increased potential for mechanical transmission along rows. Results suggested limited spread of PVS and PVX occurred within crops during the season. Accepted for publication 9 April 2007. Published 26 July 2007.


2011 ◽  
Vol 12 (1) ◽  
pp. 39 ◽  
Author(s):  
Nancy L. Robertson ◽  
Jeffrey Smeenk ◽  
Jodie M. Anderson

Although all three viruses are commonly found in potatoes throughout the world, this is the first report of potato viruses from Alaska to be sequenced and molecularly analyzed for comparisons with known viruses. Accepted for publication 17 January 2011. Published 9 February 2011.


Virus Genes ◽  
2009 ◽  
Vol 39 (1) ◽  
pp. 141-145 ◽  
Author(s):  
Neda Esfandiari ◽  
Mina Kohi-Habibi ◽  
Thomas Hohn ◽  
Mikhail M. Pooggin

2012 ◽  
Vol 60 (3) ◽  
pp. 283-298 ◽  
Author(s):  
R. Ahmadvand ◽  
A. Takács ◽  
J. Taller ◽  
I. Wolf ◽  
Z. Polgár

Potato (Solanum tuberosum L.) is the fourth most important food crop in the world. It is the most economically valuable and well-known member of the plant family Solanaceae. Potato is the host of many pathogens, including fungi, bacteria, Phytoplasmas, viruses, viroids and nematodes, which cause reductions in the quantity and quality of yield. Apart from the late blight fungus [Phytophthora infestans (Mont.) de Bary] viruses are the most important pathogens, with over 40 viruses and virus-like pathogens infecting cultivated potatoes in the field, among which Potato virus Y (PVY), Potato leaf roll virus (PLRV), Potato virus X (PVX), Potato virus A (PVA), Potato virus S (PVS) and Potato virus M (PVM) are some of the most important viruses in the world. In this review, their characteristics and types of resistance to them will be discussed.


2014 ◽  
Vol 29 (1) ◽  
pp. 9-19 ◽  
Author(s):  
Drago Milosevic ◽  
Slobodan Milenkovic ◽  
Pantelija Peric ◽  
Svetomir Stamenkovic

Aphids are the most important vectors of potato viruses during the crop?s growing season. The most widespread and damaging viruses, the potato virus Y and potato leaf roll virus, are transmitted by aphids in non-persistent and persistent manner, respectively. The two viruses cause the greatest concern of potato producers and a great constraint to seed potato production in Serbia, the region and across the world. Potato virus Y is particularly harmful, given its distribution and spreading rate. Seed potato production systems under well-managed conditions involve a series of virus control measures, including the monitoring of outbreaks of winged aphids, their abundance and species composition, in order to forecast virosis, i.e. potential plant and tuber infection periods. Monitoring the aphid vectors of potato viruses enables determination of optimum dates for haulm destruction when higher than normal numbers of winged aphids as vectors of economically harmful diseases have been observed. Haulm destruction in a potato crop reduces the risk of plant infection and virus translocation from the aboveground parts to tubers, thus keeping the proportion of infected tubers within tolerance limits allowed for certain categories of seed potatoes. This practice has positive effects if used in combination with other viral disease control measures; otherwise, it becomes ineffective. This paper provides an integral analysis of the effects and role of monitoring outbreaks of aphids, their abundance and species composition in timing haulm growth termination to prevent plant infection, virus translocation and tuber infestation in potato crops in Serbia and the wider region.


Sign in / Sign up

Export Citation Format

Share Document