scholarly journals Cellulose Nanofiber/Carbon Nanotube Conductive Nano-Network as a Reinforcement Template for Polydimethylsiloxane Nanocomposite

Polymers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1000 ◽  
Author(s):  
Chuchu Chen ◽  
Xiangting Bu ◽  
Qian Feng ◽  
Dagang Li

Both cellulose nanofiber (CNF) and carbon nanotube (CNT) are nanoscale fibers that have shown reinforcing effects in polymer composites. It’s worth noting that CNF and CNT could form a three-dimensional nano-network via mixing and vacuum filtration, which exhibit excellent mechanical strength and electrical conductivity. In this study, the developed CNF/CNT film was applied as a nano-network template and immersed into polydimethylsiloxane (PDMS) solutions. By controlling the immersed polydimethylsiloxane pre-polymer concentration, the PDMS/CNF/CNT nanocomposite with various PDMS contents were fabricated after a curing process. Morphological images showed that the CNF/CNT nano-network was well-preserved inside the PDMS, which resulted in significantly improved mechanical strength. While increasing the PDMS content (~71.3 wt %) gave rise to decreased tensile strength, the PDMS-30/CNF/CNT showed a fracture strain of 7.5%, which was around seven fold higher than the rigid CNF/CNT and still kept a desirable strength—Young’s modulus and conductivity of 18.3 MPa, 805 MPa, and 0.8 S/cm, respectively. Therefore, with the enhanced mechanical properties and the electrical conductivity, the prepared PDMS/CNF/CNT composite films may offer promising and broad prospects in the field of flexible devices.

2002 ◽  
Vol 739 ◽  
Author(s):  
Mark Hughes ◽  
George Z. Chen ◽  
Milo S. P. Shaffer ◽  
Derek J. Fray ◽  
Alan H. Windle

ABSTRACTNanoporous composite films of multi-walled carbon nanotubes (MWNTs) and either polypyrrole (PPy) or poly(3-methylthiophene) (P3MeT) were grown using an electrochemical polymerization technique in which the nanotubes and conducting polymer were deposited simultaneously. The concentration and dispersion of MWNTs in the polymerization electrolyte was found to have a significant effect on the thickness of polymer coated on each MWNT and hence the loading of MWNTs in the films produced. It has been shown that for an increasing concentration of MWNTs in the polymerization electrolyte, the thickness of polymer coated on each MWNT decreases. This relationship made it possible to minimize ionic diffusion distances within the nanoporous MWNT-PPy films produced, reducing their electrical and ionic resistance and increasing their capacitance relative to similarly prepared pure PPy films.


2001 ◽  
Vol 706 ◽  
Author(s):  
Cheol Park ◽  
Zoubeida Ounaies ◽  
Kent A. Watson ◽  
Kristin Pawlowski ◽  
Sharon E. Lowther ◽  
...  

AbstractPolymer-single wall carbon nanotube (SWNT) composite films were prepared and characterized as part of an effort to develop polymeric materials with improved combinations of properties for potential use on future spacecraft. Next generation spacecraft will require ultra-lightweight materials that possess specific and unique combinations of properties such as radiation and atomic oxygen resistance, low solar absorptivity, high thermal emissitivity, electrical conductivity, tear resistance, ability to be folded and seamed, and good mechanical properties. The objective of this work is to incorporate sufficient electrical conductivity into space durable polyimides to mitigate static charge build-up. The challenge is to obtain this level of conductivity (10-8 S/cm) without degrading other properties of importance, particularly optical transparency. Several different approaches were attempted to fully disperse the SWNTs into the polymer matrix. These included high shear mixing, sonication, and synthesizing the polymers in the presence of pre-dispersed SWNTs. Acceptable levels of conductivity were obtained at loading levels less than one tenth weight percent SWNT without significantly sacrificing optical properties. Characterization of the nanocomposite films and the effect of SWNT concentration and dispersion on the conductivity, solar absorptivity, thermal emissivity, mechanical and thermal properties were discussed. Fibers and non-woven porous mats of SWNT reinforced polymer nanocomposite were produced using electrospinning.


Langmuir ◽  
2007 ◽  
Vol 23 (10) ◽  
pp. 5707-5712 ◽  
Author(s):  
Ronald H. Schmidt ◽  
Ian A. Kinloch ◽  
Andrew N. Burgess ◽  
Alan H. Windle

2008 ◽  
Vol 8 (9) ◽  
pp. 4860-4863 ◽  
Author(s):  
Soon Man Hong ◽  
Seung Sang Hwang

Poly(vinylidene fluoride)(PVDF)/Multi-walled carbon nanotube (MWNT) composites were melt blended using internal mixer. The relationships between structures and physical properties of thin PVDF/MWNT composite films were studied. With increasing the content of MWNT, the size of spherulites in PVDF decreased. MWNT was used as a nucleating agent. The incorporation of MWNT produced a polar β-form crystal structure of PVDF. The permittivities of thin PVDF/MWNT composite films were increased with increasing the MWNT content. The percolation level in electrical conductivity occurred between 2 and 2.5 wt%. The critical conductivity saturation point for the electrical conductivity in PVDF was confirmed. Similar tendency was also observed in thermal conductivity.


2012 ◽  
Vol 22 (3) ◽  
pp. 903-908 ◽  
Author(s):  
Wenhan Guo ◽  
Chao Liu ◽  
Xuemei Sun ◽  
Zhibin Yang ◽  
Hamid G. Kia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document